PROPRIETARY: INTERNAL DRAFT

April 25, 2001

Introduction to the 001 Tool Suite

The 001 Tool Suite; also referred to as 001: Digital Gold, or simply 001, and pronounced “double-oh-one” [1-4] was created to automate the mathematically based paradigm, Development Before the Fact (DBTF) [2-4]. Along with its automation, DBTF has been used in research and "trail blazer" organizations; and is now being adopted for commercial use [5-10].

In addition to its roots in real world system design and software development, DBTF has roots in other worlds including systems theory, formal methods, formal linguistics and object technology. Although it is new, it would be natural to make assumptions about what is possible and impossible based on its superficial resemblance to other technologies such as object technology. It helps, however, to suspend any and all preconceived notions when first introduced to DBTF, because DBTF is a world unto itself─a completely new way to think about systems and software.

Preventative Paradigm

What makes DBTF different is it is a preventative paradigm instead of a curative one. Problems associated with traditional methods of design and development are prevented "before the fact" just by the way a system is defined. That is, DBTF concentrates on preventing problems of development from even happening; rather than letting them happen "after the fact", and fixing them after they've surfaced at the most inopportune and expensive point in time.

From the very beginning, a DBTF system inherently integrates all its own objects (and all aspects, relationships and viewpoints of these objects) and the combinations of functionality using these objects; maximizes its own reliability and flexibility to change (including reconfiguration in real time, change of target requirements and change of static and dynamic architectures and processes); capitalizes on its own parallelism; supports its own run-time performance analysis; and maximizes the potential for its own resource allocation, reuse and automation.

Formal But Friendly Language

A formal systems language based on DBTF's foundations, 001AXES, is used to define a DBTF system. With this language, a system has properties that come along "for the ride" that in essence control its own destiny; because of these properties, many things heretofore not believed possible with traditional methods are now possible with DBTF [Table 1]. DBTF's automation, 001, is used to ensure that these properties are captured throughout a system's design and development.

[image: image1.png]
Table 1: A Comparison

The purpose of this paper is to introduce 001’s capabilities for developing applications. It is not, however, its intent to provide a tutorial on 001AXES or 001. It is assumed a designer or developer would have received adequate training in 001 (in both its language and its environment) before using it.

Full Life Cycle Environment

Although a total system engineering and software development environment, 001 can be used to coexist and interface with other tools. It can be used to prototype a system or develop a software system fully. 001 breaks the development life cycle into a sequence of stages, including: requirements and design modeling by formal specification and analysis; automatic code generation based on consistent and logically complete models; test and execution; and simulation.

001's motivation is to facilitate the “doing things right in the first place” development style, avoiding the “fixing wrong things up” traditional approach. To automate the theory, 001 is developed with the following considerations: error prevention from the early stage of system definition, life cycle control of the system under development, and inherent reuse of highly reliable systems.

001 provides traceability from requirements to design, implementation (for example, the code it generates has names corresponding to the original requirements) and testing; the system under development is manageable and maintainable. Systems being managed (e.g., a system of requirements and the system of specifications which implements those requirements) are objects from the viewpoint of 001. With 001, objects in one phase—say, requirements—are traceable to objects in the next phase of development, the specification phase. This feature is helpful for large, complex software systems, for which maintenance in traditional environments is even more time and effort consuming than development.

001AXES lies in the heart of 001. Although formal, this language is practical and friendly. It can be used to define any kind of system the human mind can envision and develop any software application that has the potential to be implemented. Based on a theory that extends traditional mathematics of systems with a unique concept of real time distributed control, 001AXES has embodied within it a natural representation of structured relationships of objects and their interactions as events.

System Oriented Objects

All 001AXES models are defined and developed as system oriented objects (SOOs). A SOO is understood the same way without ambiguity by all other objects within its environment—including all users, models and automated tools. Each SOO is made up of other SOOs. Every aspect of a SOO is integrated not the least of which is the integration of its object oriented parts with its function oriented and its timing oriented parts. The philosophy which supports the theory that to integrate all the objects in a system you need be able to integrate all aspects of each object in the system is strongly adhered to.

A SOO lends itself inherently to diverse forms of development including that which is component based. Instead of systems being object-oriented, objects are systems-oriented. The means for capturing inherent and recursive reuse is provided by the formal definition mechanisms within 001 AXES. Not only does it have properties in its definitions to support the designer in finding, creating and using commonality from the very beginning of a system's life cycle; commonality is ensured simply by using this language. This means the modeler does not have to work at making something become object oriented. Rather he models the objects and their relationships, and the functions and their relationships; and the language inherently integrates these aspects as well as takes care of making those things that should become objects become objects.

Every SOO is a candidate to be a reusable—and it is inherently integratable—within the same system, within other systems and within all of these systems as they evolve. This is because every object is a system and every system is an object.

001AXES provides the necessary information in its definitions for an automated environment to know whether a system should be allocated to distributed, asynchronous or synchronous processors; or whether two processors or ten processors should selected. With traditional methods, it is up to the developer to incorporate such detail into his application. For any change in the architecture, it is necessary for the developer to then redesign and redevelop his applications that are impacted by that change. With DBTF, this is not necessary, since this process is inherent and automated.

A Client Record System Example

Throughout this paper a simple client record system for the web is used to illustrate the use of 001 in design and development. To access this web service, a client logs in and then fills out some registration information. After registering, the client can add a new customer record, remove an existing customer record, list the set of existing customer records, or exit a login session.

Although the example life cycle process model in this paper illustrates a means to perform DBTF processes of design and development, DBTF users are not tied to any particular process model for development when building an application (eXtreme Programming, spiral development, or waterfall development, etc.) other than that which is implied by the 001AXES language.

With DBTF the same language semantics is used throughout a life cycle to define all aspects of a system including its requirements, system design and software design models; enterprise, hardware and software models; functional, timing (e.g., scheduling) and object oriented parts of each model. Model examples provided here are defined and designed with 001AXES; and simulated (to understand a system's real time distributed behavior), developed (to show a generated software implementation), tested and maintained with 001.

Once 001AXES is used to capture the essence of DBTF in defining a system, complete software implementations (100% of the code) are automatically generated by 001 in a developer's language of choice (such as Java, C or C++). The software code examples shown in this paper have been automatically generated in Java or C (from their 001AXES requirements and specification models) using 001. Although the current commercial versions of 001 are hosted on UNIX and Linux, other environments can be cross targeted with 001 from the host to the target architecture (for example, web applications developed using 001 on Linux but generated by 001 to reside under NT).

Because it is based on DBTF, 001 is able to automatically generate all of (and any kind of) software system from a set of 001AXES defined requirements, specifications or design--for any configured architecture. This is in fact how the 001 Tool Suite itself was developed. That is, it is defined with itself and it automatically (re)generates itself as an ongoing evolving system on many diverse architectures.

Since all the components within 001 are inherently integrated as part of the same DBTF system (Figure 1 contains a simplified 001AXES object type definition of the tool suite's architecture), no additional time and effort is needed for integrating diverse products for developing different parts of a system, phases of the system, or for integrating the modules or views (e.g., use cases, data flow, timing, state transition and object types) of a module created with or resulting from these disparate products. If one component is used for, say, definition and another for analysis and still another for generating code, there will not be interface mismatches between these components of the tool suite. Similarly, there are no interface mismatches between the components of the applications developed with the tool suite—and, no interface mismatches between each component's states of development.

[image: image21.wmf]A

C

o

m

p

a

r

i

s

o

n

T

r

a

d

i

t

i

o

n

a

l

(

A

f

t

e

r

t

h

e

F

a

c

t

)

0

0

1

(

B

e

f

o

r

e

t

h

e

F

a

c

t

)

I

n

h

e

r

e

n

t

r

e

u

s

e

~

E

v

e

r

y

o

b

j

e

c

t

a

c

a

n

d

i

d

a

t

e

f

o

r

r

e

u

s

e

~

C

u

s

t

o

m

i

z

a

t

i

o

n

i

n

c

r

e

a

s

e

s

r

e

u

s

e

p

o

o

l

P

r

o

d

u

c

t

x

n

o

t

d

e

f

i

n

e

d

a

n

d

d

e

v

e

l

o

p

e

d

w

i

t

h

i

t

s

e

l

f

R

e

u

s

e

n

o

t

i

n

h

e

r

e

n

t

~

R

e

u

s

e

i

s

a

d

h

o

c

~

C

u

s

t

o

m

i

z

a

t

i

o

n

a

n

d

r

e

u

s

e

a

r

e

m

u

t

u

a

l

l

y

e

x

c

l

u

s

i

v

e

S

y

s

t

e

m

s

n

o

t

t

r

a

c

e

a

b

l

e

o

r

e

v

o

l

v

a

b

l

e

~

L

o

c

k

e

d

i

n

p

r

o

d

u

c

t

s

,

a

r

c

h

i

t

e

c

t

u

r

e

s

,

e

t

c

.

~

P

a

i

n

f

u

l

t

r

a

n

s

i

t

i

o

n

f

r

o

m

l

e

g

a

c

y

~

M

a

i

n

t

e

n

a

n

c

e

p

e

r

f

o

r

m

e

d

a

t

c

o

d

e

l

e

v

e

l

N

o

g

u

a

r

a

n

t

e

e

o

f

f

u

n

c

t

i

o

n

i

n

t

e

g

r

i

t

y

a

f

t

e

r

i

m

p

l

e

m

e

n

t

a

t

i

o

n

A

u

t

o

m

a

t

i

o

n

s

u

p

p

o

r

t

s

m

a

n

u

a

l

p

r

o

c

e

s

s

~

M

o

s

t

l

y

m

a

n

u

a

l

d

o

c

u

m

e

n

t

a

t

i

o

n

,

p

r

o

g

r

a

m

m

i

n

g

,

t

e

s

t

g

e

n

e

r

a

t

i

o

n

,

t

r

a

c

e

a

b

i

l

i

t

y

,

e

t

c

.

A

m

b

i

g

u

o

u

s

r

e

q

u

i

r

e

m

e

n

t

s

~

I

n

f

o

r

m

a

l

o

r

s

e

m

i

-

f

o

r

m

a

l

l

a

n

g

u

a

g

e

~

D

i

f

f

e

r

e

n

t

p

h

a

s

e

s

,

l

a

n

g

u

a

g

e

s

a

n

d

t

o

o

l

s

~

D

i

f

f

e

r

e

n

t

l

a

n

g

u

a

g

e

f

o

r

o

t

h

e

r

s

y

s

t

e

m

s

t

h

a

n

f

o

r

s

o

f

t

w

a

r

e

I

n

t

e

r

f

a

c

e

e

r

r

o

r

s

(

o

v

e

r

7

5

%

o

f

a

l

l

e

r

r

o

r

s

)

~

M

o

s

t

f

o

u

n

d

a

f

t

e

r

i

m

p

l

e

m

e

n

t

a

t

i

o

n

~

S

o

m

e

f

o

u

n

d

m

a

n

u

a

l

l

y

~

S

o

m

e

f

o

u

n

d

b

y

d

y

n

a

m

i

c

r

u

n

s

a

n

a

l

y

s

i

s

~

S

o

m

e

n

e

v

e

r

f

o

u

n

d

D

o

l

l

a

r

s

w

a

s

t

e

d

,

e

r

r

o

r

p

r

o

n

e

s

y

s

t

e

m

s

~

N

o

t

c

o

s

t

e

f

f

e

c

t

i

v

e

~

D

i

f

f

i

c

u

l

t

t

o

m

e

e

t

s

c

h

e

d

u

l

e

s

~

L

e

s

s

o

f

w

h

a

t

y

o

u

n

e

e

d

a

n

d

m

o

r

e

o

f

w

h

a

t

y

o

u

d

o

n

'

t

n

e

e

d

0

0

1

d

e

f

i

n

e

d

w

i

t

h

a

n

d

g

e

n

e

r

a

t

e

d

b

y

i

t

s

e

l

f

~

#

1

i

n

a

l

l

e

v

a

l

u

a

t

i

o

n

s

S

y

s

t

e

m

s

t

r

a

c

e

a

b

l

e

a

n

d

e

v

o

l

v

a

b

l

e

~

O

p

e

n

a

r

c

h

i

t

e

c

t

u

r

e

~

S

m

o

o

t

h

t

r

a

n

s

i

t

i

o

n

f

r

o

m

l

e

g

a

c

y

~

M

a

i

n

t

e

n

a

n

c

e

p

e

r

f

o

r

m

e

d

a

t

s

p

e

c

l

e

v

e

l

G

u

a

r

a

n

t

e

e

o

f

f

u

n

c

t

i

o

n

i

n

t

e

g

r

i

t

y

a

f

t

e

r

i

m

p

l

e

m

e

n

t

a

t

i

o

n

A

u

t

o

m

a

t

i

o

n

d

o

e

s

r

e

a

l

w

o

r

k

~

A

u

t

o

m

a

t

i

c

d

o

c

u

m

e

n

t

a

t

i

o

n

,

p

r

o

g

r

a

m

m

i

n

g

,

t

e

s

t

g

e

n

e

r

a

t

i

o

n

,

t

r

a

c

e

a

b

i

l

i

t

y

,

e

t

c

.

~

1

0

0

%

c

o

d

e

a

u

t

o

m

a

t

i

c

a

l

l

y

g

e

n

e

r

a

t

e

d

f

o

r

a

n

y

k

i

n

d

o

f

s

o

f

t

w

a

r

e

U

n

a

m

b

i

g

u

o

u

s

r

e

q

u

i

r

e

m

e

n

t

s

~

f

o

r

m

a

l

,

b

u

t

f

r

i

e

n

d

l

y

l

a

n

g

u

a

g

e

~

A

l

l

p

h

a

s

e

s

,

s

a

m

e

l

a

n

g

u

a

g

e

a

n

d

t

o

o

l

s

~

S

a

m

e

l

a

n

g

u

a

g

e

f

o

r

s

o

f

t

w

a

r

e

,

h

a

r

d

w

a

r

e

a

n

d

a

n

y

o

t

h

e

r

s

y

s

t

e

m

N

o

i

n

t

e

r

f

a

c

e

e

r

r

o

r

s

~

A

l

l

f

o

u

n

d

b

e

f

o

r

e

i

m

p

l

e

m

e

n

t

a

t

i

o

n

~

A

l

l

f

o

u

n

d

b

y

a

u

t

o

m

a

t

i

c

a

n

d

s

t

a

t

i

c

a

n

a

l

y

s

i

s

~

A

l

w

a

y

s

f

o

u

n

d

B

e

t

t

e

r

,

f

a

s

t

e

r

,

c

h

e

a

p

e

r

s

y

s

t

e

m

s

~

1

0

t

o

1

,

2

0

t

o

1

,

5

0

t

o

1

.

.

.

d

o

l

l

a

r

s

s

a

v

e

d

~

M

i

n

i

m

u

m

t

i

m

e

t

o

c

o

m

p

l

e

t

e

~

N

o

m

o

r

e

,

n

o

l

e

s

s

o

f

w

h

a

t

y

o

u

n

e

e

d

I

n

t

e

g

r

a

t

e

d

&

s

e

a

m

l

e

s

s

o

b

j

e

c

t

s

,

p

h

a

s

e

s

,

p

r

o

d

u

c

t

s

,

a

r

c

h

i

t

e

c

t

u

r

e

s

a

n

d

e

n

v

i

r

o

n

m

e

n

t

~

S

y

s

t

e

m

i

n

t

e

g

r

a

t

e

d

w

i

t

h

s

o

f

t

w

a

r

e

~

S

y

s

t

e

m

o

r

i

e

n

t

e

d

o

b

j

e

c

t

s

:

i

n

t

e

g

r

a

t

i

o

n

o

f

f

u

n

c

t

i

o

n

,

t

i

m

i

n

g

,

a

n

d

o

b

j

e

c

t

o

r

i

e

n

t

e

d

~

G

U

I

i

n

t

e

g

r

a

t

e

d

w

i

t

h

a

p

p

l

i

c

a

t

i

o

n

~

S

i

m

u

l

a

t

i

o

n

i

n

t

e

g

r

a

t

e

d

w

i

t

h

s

o

f

t

w

a

r

e

c

o

d

e

M

i

s

m

a

t

c

h

e

d

o

b

j

e

c

t

s

,

p

h

a

s

e

s

,

p

r

o

d

u

c

t

s

,

a

r

c

h

i

t

e

c

t

u

r

e

s

a

n

d

e

n

v

i

r

o

n

m

e

n

t

~

S

y

s

t

e

m

n

o

t

i

n

t

e

g

r

a

t

e

d

w

i

t

h

s

o

f

t

w

a

r

e

~

F

u

n

c

t

i

o

n

o

r

i

e

n

t

e

d

o

r

o

b

j

e

c

t

o

r

i

e

n

t

e

d

~

G

U

I

n

o

t

i

n

t

e

g

r

a

t

e

d

w

i

t

h

a

p

p

l

i

c

a

t

i

o

n

~

S

i

m

u

l

a

t

i

o

n

n

o

t

i

n

t

e

g

r

a

t

e

d

w

i

t

h

s

o

f

t

w

a

r

e

c

o

d

e

Figure 1: The 001 Tool Suite Architecture Defined with 001

Vertically, there are two model spaces in 001:

Definition space: the static specification of the system under development. Every model is defined in terms of Function Maps (FMaps
) to capture time characteristics and Type Maps (TMaps
) to capture space characteristics, which guide a designer in thinking through his concepts at all levels of system design (Figure 2). TMaps are used for defining types of objects and the relationships between those objects, FMaps are used for defining things done with the objects, in the TMap (i.e., for defining functions and state transitions; including timing, ordering and priorities). FMaps and TMaps are inherently integrated. In 001, FMaps exist either as FMap operations or as FMap structures (user configurable FMaps); TMaps exist simply as TMaps or TMap structures (user configurable TMaps, called parameterized types).

[image: image18.wmf]R

e

l

a

t

i

o

n

s

h

i

p

B

e

t

w

e

e

n

D

e

f

i

n

i

t

i

o

n

a

n

d

E

x

e

c

u

t

i

o

n

F

M

a

p

i

n

s

t

a

n

t

i

a

t

i

o

n

T

M

a

p

i

n

s

t

a

n

t

i

a

t

i

o

n

O

M

a

p

o

b

j

e

c

t

e

v

e

n

t

s

c

t

i

m

e

i

n

t

e

r

v

a

l

3

E

M

a

p

c

=

c

r

e

a

t

e

_

c

l

i

e

n

t

c

=

c

r

e

a

t

e

c

=

p

u

t

:

p

l

a

c

e

,

c

l

i

e

n

t

C

.

D

.

O

M

a

p

o

b

j

e

c

t

e

v

e

n

t

s

p

0

c

0

t

i

m

e

i

n

t

e

r

v

a

l

2

=

c

r

e

a

t

e

_

c

l

i

e

n

t

=

c

r

e

a

t

e

p

0

,

c

0

=

c

r

e

a

t

e

_

c

l

i

e

n

t

_

a

n

d

_

p

l

a

c

e

c

0

=

k

:

c

l

i

e

n

t

p

0

=

k

:

p

l

a

c

e

=

p

u

t

:

p

l

a

c

e

,

c

l

i

e

n

t

(

p

0

,

c

0

)

E

M

a

p

T

M

a

p

c

i

t

y

(

S

t

r

i

n

g

B

u

f

f

e

r

)

s

t

r

e

e

t

(

S

t

r

i

n

g

B

u

f

f

e

r

)

n

u

m

b

e

r

(

n

a

t

)

n

a

m

e

(

S

t

r

i

n

g

B

u

f

f

e

r

)

u

i

d

(

n

a

t

)

c

l

i

e

n

t

p

l

a

c

e

B

.

D

E

F

I

N

I

T

I

O

N

S

P

A

C

E

E

X

E

C

U

T

I

O

N

S

P

A

C

E

F

M

a

p

c

=

c

r

e

a

t

e

_

c

l

i

e

n

t

(

c

_

)

c

o

:

i

s

:

e

x

i

s

t

i

n

g

,

c

l

i

e

n

t

(

c

_

)

c

=

c

l

o

n

e

1

(

c

_

)

c

=

c

r

e

a

t

e

(

c

_

)

J

o

i

n

p

0

,

c

0

=

c

r

e

a

t

e

_

c

l

i

e

n

t

_

a

n

d

_

p

l

a

c

e

(

c

_

)

C

o

I

n

c

l

u

d

e

c

0

=

k

:

c

l

i

e

n

t

(

c

_

)

p

0

=

k

:

p

l

a

c

e

(

c

_

)

c

=

p

u

t

:

p

l

a

c

e

,

c

l

i

e

n

t

(

p

0

,

c

0

)

A

.

E

M

a

p

=

c

r

e

a

t

e

_

c

l

i

e

n

t

(

c

_

)

=

c

r

e

a

t

e

(

c

_

)

=

c

r

e

a

t

e

_

c

l

i

e

n

t

_

a

n

d

_

p

l

a

c

e

(

c

_

)

=

k

:

c

l

i

e

n

t

(

c

_

)

=

k

:

p

l

a

c

e

(

c

_

)

O

M

a

p

o

b

j

e

c

t

e

v

e

n

t

s

t

i

m

e

i

n

t

e

r

v

a

l

1

c

_

 Figure 2: Definition/Execution Space of 001AXES Defined Systems

Execution space: the realization of the definition space, reflecting the run-time performance of the system. This space is realized in terms of Execution Maps (EMaps, instantiations of FMaps) and Object Maps (OMaps, instantiations of TMaps, see Figure 2).

All 001AXES maps (sometimes referred to as control maps) are defined in terms of formal structures of control (control of input access, output access, input values, output values, error detection, invocation, timing and priorities). Features such as polymorphism, encapsulation, inheritance, and persistence formally reside both on the function side as well as the object side of a system; where the functional side is defined in terms of the object side and vice versa, providing the ability to automatically trace within and between levels and layers of a system.

The TMap provides universal primitive operations of type—“Any”— for controlling objects and their object states, which are inherited by all types of objects. These universal primitive operations provide a means to create, destroy, copy, reference, move, access a value, detect and recover from errors, and access the type of an object. They provide an easy way to think about and manipulate different types of objects. With the universal primitive operations, building systems can be accomplished in a uniform manner.

Sometimes one would like to treat all objects in an identical way to make life easier. In addition to the universal operations and other reusables that can be used with all objects, there are the data types, TMap and OMap. With these types, one can take further advantage of the FMap and TMap environment when there is a need to use a more generic form of reuse when it comes to working with objects. For example, when an object needs to find out about itself, it is able to query the TMap from whence it came by using data type, TMap. One may wish to do some of the same kinds of things to different types of objects such as printing things about those objects or loading and storing them. Data type OMap is used for doing these kinds of things with and to objects.

Components within 001

One set of components within the tool suite, 001Developer, is used by a developer or designer to work with the definition space of a system; another set, 001Engineer, is used by the system designer to understand a system's execution space. Although this paper focuses more on 001Developer's functions, we discuss 001Engineer's functions in order to understand how everything works together as one integrated system (see section Systems Engineering).

001AXES can be thought of as operating in two distinct modes within the 001 environment:

Executable specification: 001AXES can serve as an executable specification language. In this mode, a 001AXES definition can serve as input to 001's simulator component (the Xecutor configured for simulation) for dynamic analysis during the design phase; or it can be layered onto 001's DXecutor (when the Xecutor is configured as a stand-alone distributed object manager) for distributed system development.

Automatic code generation: a 001 AXES definition serves as input to the code generator for purposes of prototyping or production software development. This feature facilitates the automatic programming of language independent, platform independent software development.

001Engineer contains components for systems design (system engineering, process modeling, enterprise modeling). It consists primarily of the requirements traceability component, RT(x), for analyzing and tracing requirements, and a simulator component (Xecutor in simulation mode) that simulates a 001AXES model.

001Developer contains components used by both system designers and software developers. It consists primarily of graphical editing capabilities for defining models (Definition Editors), an Analyzer component that checks models for consistency and logical completeness, a generator component (RAT) that automatically generates executable code or documentation from 001AXES models, the OMap Editor for viewing and testing objects and a set of reusable building blocks.

In addition to other reusables supplied by 001Developer, the designer starts with a tool kit or foundation of primitive types and a set of existing types in the form of universal and core types. The designer also has the option of defining and building his own types as well as other types of reusables with 001.

In addition to the components within the 001 Tool Suite, other 001 developed components are available to support 001 users. An example of such a component is a product called WebJumpStarter, a "middleware" reusable for jump starting 001 developed web based applications. The example in this paper uses 001 along with the WebJumpStarter in its development process.

Architecture of the WebJumpStarter

A key objective of WebJumpStarter (WJS) is to raise the development level of web based systems. To bring this about, WJS capitalizes on unique properties of 001. WJS is an environment for developing reliable distributed object systems, layered onto 001's Distributed Xecutor (DXecutor). The developer of these distributed objects works on a layer above the traditional layer of development for distributed objects such as those provided by technologies Common Object Request Broker Architecture (CORBA), Distributed Component Object Model (DCOM), Java Remote Method Invocation (RMI), and Enterprise JavaBeans (EJB). The major reason for this is 001AXES has embedded within it characteristics which lend themselves to the automation of real-time and distributed systems. In 001 technology terms, any one of these lower level distributed architecture technologies could be used as an implementation environment for the DXecutor.

The DXecutor is a distributed object manager used in conjunction with the 001 Tool Suite. It is a runtime environment that knows about the real-time and distributed semantics of a 001AXES specification. What this means to a developer is he can use 001AXES to define the real-time functional process from the application perspective. The variables as inputs and outputs to the functions of the application correspond to real-time events in the actual system. In 001AXES, the developer no longer has to define event management, streaming of information, management of communications, and data transfer between clients and servers of the distributed object management system (DOMS) with data types in their application, it is intrinsic in the grammar of 001AXES.

Whereas in a traditional DOMS, the developer works with implementation artifacts of the DOMS; in the WJS, the DOMS is under the hood, and the developer does not directly work with its implementation artifacts. This allows an application developer to concentrate on the application (e.g., the business rules) without the interference of implementation artifacts. The developer uses 001AXES to define the functionality of the application (WHAT is to be done) and the rest is automated.

The other aspects of a 001 system specification used to accomplish this automation are the allocation architectures and the resource architectures. At a high level, the allocation architecture defines WHO does WHAT and the resource architecture defines WHO is capable of WHAT, again in terms of FMaps and TMaps. For each functional architecture there is one of a possible set of resource architectures. For each resource architecture, the allocation architecture maps each function of the functional architecture (the WHAT) to functions in its resource architecture capable of performing it (the WHO). WJS and 001 determine how best to implement this correspondence (e.g., statically at compile time using a RAT or dynamically at runtime using the DXecutor).

In addition to using 001AXES with the 001 Tool Suite to define an application's functional architecture for WJS, 001 provides support for accessing traditional architectures (e.g., Java 2 Platform, Enterprise Edition, J2EE platform), standard web application facilities and tools, and application service resources deployed as distributed agents (e.g., 001 agents for session management, dynamic page content services and trading services). With WJS, many traditional technologies are no longer needed by a web developer.

The DXecutor can be used to manage any type of distributed object system (e.g., enterprise or work flow management). It manages parallel threads of execution, inherent in any 001AXES specification. This entails activating primitive functions when objects arrive, starting new event activated threads, activating and interrupting based on functional priorities, coordination of communication with other DXecutors and automatic marshaling (or serialization) of object shipments to consumer functions resident in other DXecutors. With the DXecutor (which is at a higher layer of abstraction), designers and developers no longer have to program the event interactions of components as they would with Enterprise Java Beans (EJB). The equivalent of what is accomplished by a human programmer using EJB's session and entity beans (e.g., object state management, remote and shared data access, object persistence) is automatic. The specification of business logic in a 001AXES functional specification is completely transparent while an EJB specification still has embedded remnants of the class mechanisms used to manage distributed objects.

WJS's view server supports the integration of dynamic web page content (i.e., OMap data) embedded within HTML pages. This allows a developer to define dynamic content based upon 001AXES OMap queries that are then embedded directly into an HTML page description being passed to the user's web browser.

Extensible Markup Language (XML) technologies such as XHTML and XSLT all play a part in WJS. To a large extent, these are again under the hood. For example, XML Document Type Definitions (DTDs) can be automatically generated from a TMap with the appropriate RAT configuration; and an XML document can be generated from an OMap. In 001, data type OMap corresponds to the XML Document Object Model (DOM).

An OMap represents the information for a system that is to be remembered; and it is storable to disk as a persistent object. Other data stores (e.g., Oracle) have been used to store OMaps. An interface that automatically maps an OMap to ODBC or JDBC for the Enterprise Information Tier (EIS) is supported through the use of primitive type extensions mapped to appropriate class APIs. As an alternative to EIS interfaces, OMaps are persistently stored on disk in their native format. OMaps can be edited by the OMap Editor component of 001 and then converted to and from XML format as needed.

Current RAT configurations used for generating code implementations with the WJS are C (or C++) and Java. The main reason for a Java RAT is for its platform independence and its large set of supporting object class libraries. The main reason for C (or C++) on the web is for its runtime efficiency. Using 001AXES specifications (which are transparent to any particular implementation language) allows a developer to chose the most appropriate solution to their implementation (e.g., Java with its large portable set of class libraries or C++ for efficiency).

Developing web applications in the WJS is managed much the same as it is in the 001 Tool Suite. The main difference is in the types of objects being managed. In addition to the management of FMaps and TMaps, other web related artifacts such as HTML web page specifications are managed from the Road Map (RMap). This allows a developer to see related web development artifacts and their relationships.

The Genericity of the Process

There is commonality in every development process or discipline. Sometimes a manager designs. Sometimes he manages. Sometimes he verifies or analyzes. Sometimes a designer manages. Other times he designs. Or implements. Each such viewpoint is relative to a common view.

The most successful requirements definition process takes place in an environment where the user, designer, developer and test engineer work out the requirements together, early in the game. This type of working relationship accelerates the understanding of the user's requirements by all parties involved. It uncovers misunderstandings between and among all parties, and it uncovers "user-intent" errors before development begins. In addition, there is often knowledge on the part of the designer, developer, or test engineer that the user does not have; having it, the user would often define the requirements differently. For example, the mere change of a specified accuracy could save "millions" during the development process and yet not affect the success of the application; this could mean less expensive equipment or fewer people needed to work on the project. Such understanding can be accelerated if all parties have a common means of formal communication.

The 001AXES language provides this kind of vehicle for understanding, for all disciplines involved. For each phase of development, whether it be process modeling, requirements, design or testing; the process is, for all practical purposes, generic. If a designer begins by defining requirements, he can define them with 001AXES; if he begins at the specification or design phase, he defines his designs with 001AXES; or if his responsibility is testing, he can define his test cases with 001AXES. The generic development process described below can be applied to any and all of these phases, as well as others.

Management within the Tool Suite

001 has several manager components. Each manager is used to manage a portion of the life cycle development of a system and artifacts about that system introduced by the developer (e.g., development issues and decisions made about a definition under development). Each manager manages an RMap of objects to be managed and may manage other managers (Figure 3).

In 001's life cycle management system in which definitions are managed, an RMap provides an index or table of contents to the user’s system of definitions; it also supports the managers in the

[image: image19.wmf]A

n

R

M

a

p

D

e

f

i

n

e

s

t

h

e

A

r

c

h

i

t

e

c

t

u

r

e

o

f

a

S

y

s

t

e

m

A

.

R

M

a

p

o

f

p

r

o

j

e

c

t

s

.

B

.

R

M

a

p

o

f

l

i

b

r

a

r

i

e

s

w

i

t

h

i

n

a

p

r

o

j

e

c

t

.

C

.

R

M

a

p

o

f

d

e

f

i

n

i

t

i

o

n

s

w

i

t

h

i

n

a

p

r

o

j

e

c

t

l

i

b

r

a

r

y

.

D

.

R

e

q

u

i

r

e

m

e

n

t

s

f

o

r

t

a

r

g

e

t

s

y

s

t

e

m

b

e

i

n

g

b

u

i

l

t

.

E

.

T

h

e

t

a

r

g

e

t

a

p

p

l

i

c

a

t

i

o

n

s

y

s

t

e

m

b

e

i

n

g

b

u

i

l

t

.

F

.

A

t

e

s

t

i

n

g

s

y

s

t

e

m

f

o

r

t

h

e

t

a

r

g

e

t

a

p

p

l

i

c

a

t

i

o

n

.

B

.

R

M

a

p

o

f

L

i

b

r

a

r

i

e

s

C

.

R

M

a

p

o

f

d

e

f

i

n

i

t

i

o

n

s

T

M

a

p

A

.

R

M

a

p

o

f

P

r

o

j

e

c

t

s

T

M

a

p

F

M

a

p

T

M

a

p

F

M

a

p

T

M

a

p

F

M

a

p

D

.

R

e

q

u

i

r

e

m

e

n

t

s

E

.

T

a

r

g

e

t

A

p

p

l

i

c

a

t

i

o

n

S

y

s

t

e

m

F

.

T

e

s

t

i

n

g

S

y

s

t

e

m

Figure 3: An RMap Defines the Architecture of a System

management of these definitions, including definitions for FMaps, TMaps, FMap and TMap defined structures, OMaps, primitive data types, objects brought in from other environments, and other RMaps. Managers use the RMap to coordinate multi-user access to the definitions of the system being developed. Each RMap in a system is an OMap of the objects in the system used to develop that system within each particular manager’s domain.

The RMap editor is used to define an RMap as a relational hierarchy, the combination of the control system as a hierarchy and relations (as network, non-control like connections) forming a web of communication or some other abstract form of dependency between two or more nodes in the RMap. These relations allow the manager to maintain cross-phase dependencies between the definition systems within each development phase of a system. For example, the relation of a requirement (as part of a system of requirements) to its dependent implementation FMaps or TMaps (as part of the target system
 under development) and testing FMaps and TMaps (as part of the testing system) can be visualized on the same RMap. Ultimately, these cross-phase system relations provide for the full traceability of requirements to generation artifacts (e.g., code) and back again.

001's managers include the Session Manager for managing all sessions, the Project Manager for managing all projects, the Library Manager for managing libraries within one project, the Definition Manager for managing definitions within a library, and the RT(x) manager for capturing information about objects in each of the above managers.

The Session Manager is the initial manager responsible for entry into 001 and authorizing administrative or normal Project Manager access (Figure 4). To start 001's Session Manager the user types oo1 and enters his name and password. If the user is authorized, the Session Manager starts a Project Manager for the user. To enter into the Project Manager's administrative interface, the user enters "001super" for the name field and the supervisor's password.

[image: image2.png]
Figure 4: Session Manager for Managing 001 Session

The Project Manager manages all projects and users (Figure 5). It lets the user create, enter, and delete projects; and maintains a list of file system mount points on which projects may reside, watching them for adequate space. For each project, the Project Manager also maintains a list of users who may access the project; and it enforces these access privileges.

The Library Manager manages a single project, where each object it manages is a library (Figure 6, Note that this figure shows an example of a 001 printout as opposed to a screen shot.). The Library Manager allows the user to create, enter, and delete libraries within that project. Libraries may also be linked together into subtrees; this enables one library to use the definitions in another library. Library utilities work on the currently selected library to provide error recovery, environment configuration, searching, and other useful support.

The Definition Manager manages a library, where each object it manages is a definition or another library (Figure 7). The Definition Manager allows a user to manage the life cycle of a definition. In addition to creating, editing, importing (definitions from other libraries), and

[image: image3.png]
Figure 5: Project Manager for Managing Projects

deleting definitions; the Definition Manager provides the following for a selected definition (the other managers perform these functions implicitly):

Definition: a user can describe an application in terms of the 001AXES graphical language. The Definition Editor is provided for constructing map definitions as well as performing life cycle functions on the definition being edited. Examples of other utilities provided to support definitions are structure derivation, printing, searching, layout, scaling and color coding of definition nodes.

Analysis: a user can verify the correctness of a definition in terms of itself and in terms of its integration with other related definitions. A status is associated with each step or phase of a definition along its life cycle path. Analysis may result in the status of a definition changing, showing a transition to the new phase as the definition progresses though its life cycle development process.

Resource allocation: a user may define SGT configurations of the RAT which the Definition Manager applies when RATting. Each RAT configuration translates the definition being RATted to some export format which could be generated code, English documents or management information (artifacts about the definition such as who wrote the definition).

[image: image4.png]
Figure 6: Library Manager for Managing Libraries in a Project

Execution: the user may run and test executable systems from the Definition Manager. The manager invokes a debugger for the user. During execution, the user can use standard debugger features native to the machine operating environment, the OMap editor, or print out an ASCII object representation to understand and experiment with the implementation being executed.

General support: a user has a general purpose set of interactive functions (for example, searching, navigation, viewing, hiding of RMap details through filtering and coloring, and scaling the view of the RMap). In addition, subtrees or the entire library of definitions may be rebuilt using the Rebuild option (i.e., their life cycle phases of edit, analyze and RAT is reinvoked), resulting in the regeneration of the system.

The Definition Editor of the Definition Manager is used to define TMaps, OMaps, FMaps and SGTs in graphical tree form (Figure 8 shows individual Definition Editors managing a TMap, OMap and an FMap respectively). In addition to editing facilities used to construct graphical definitions, the Definition Editor can be used to manage the life cycle process of the definition being edited.

[image: image5.png]
Figure 7: Definition Manager for Managing Definitions in a Library

The RT(x) Manager is used to enter the user's requirements and life cycle artifacts into 001's environment, providing for user life cycle management, requirements traceability and metrics gathering (Figure 9). The user interface for RT(x) is a configuration of the OMap Editor using its programming API. This information about an object being managed and the relations between it and other managed objects (e.g., between a requirement, its target system implementation, and testing system) is captured in a persistent OMap database based upon a TMap that describes a default complex of development artifacts and relations.

The Generic Life Cycle Process

The development of a DBTF system follows a general pattern (see Figure 10) of definition (to state what the system is to do and be), analysis (to verify consistency and logical completeness),

[image: image6.png]
 Figure 8: Definition Editor for Defining TMaps, OMaps and FMaps

implementation (resource allocation) and execution (to validate performance). 001's Actions menu provides the functions for these development process disciplines from within a 001 manager (Figure 11).

Definition Phase. The first part of the generic process is the modeling, or Definition phase, keeping in mind that all development phases include some form of definition. This is the time when the system designer organizes his system in terms of TMaps, OMaps and FMaps (and structures of TMaps, OMaps and FMaps), using a Road Map (RMap) as a management and organization tool. He also models the user interface for his application. Part of this process is finding maps in earlier developed libraries that can be reused.

[image: image7.png]
Figure 9: The RT(x) Manager Provides for Life Cycle Management and Traceability

Using editing facilities of the tool suite, models (for example requirements, design, test cases, use cases) are defined in FMaps, TMaps and predefined objects as persistent OMaps. During this process, the user defines what the system is to do in terms of the objects that exist. In order to define a map in 001, the user selects the option, Create, from the Actions menu from within one of 001's managers (Figure 11).

Typical DBTF Design Process

Typically, a designer or team of designers will begin to design a DBTF system by sketching a TMap (using the Definition Editor) of the application. This is where the designers decide on the types of objects, and the relationships between those objects, they will have in their system (see TMap in Figure 8).

Often an RMap will be sketched in parallel (using the RMap Editor) with the TMap and used to organize all system objects (including TMaps, OMaps, FMaps and other RMaps). At each node

[image: image20.wmf]T

h

e

G

e

n

e

r

i

c

L

i

f

e

C

y

c

l

e

P

r

o

c

e

s

s

:

S

y

s

t

e

m

E

n

g

i

n

e

e

r

i

n

g

S

e

a

m

l

e

s

s

l

y

I

n

t

e

g

r

a

t

e

d

w

i

t

h

S

o

f

t

w

a

r

e

D

e

v

e

l

o

p

m

e

n

t

•

R

e

v

i

s

e

F

M

a

p

s

a

n

d

T

M

a

p

s

•

R

e

p

e

a

t

e

n

g

i

n

e

e

r

i

n

g

a

n

d

/

o

r

d

e

v

e

l

o

p

m

e

n

t

p

r

o

c

e

s

s

•

D

e

f

i

n

e

F

M

a

p

s

a

n

d

T

M

a

p

s

f

o

r

a

p

p

l

i

c

a

t

i

o

n

•

A

n

a

l

y

z

e

•

G

e

n

e

r

a

t

e

p

r

o

d

u

c

t

i

o

n

r

e

a

d

y

c

o

d

e

•

E

x

e

c

u

t

e

o

n

t

a

r

g

e

t

m

a

c

h

i

n

e

•

D

e

f

i

n

e

F

M

a

p

s

a

n

d

T

M

a

p

s

f

o

r

s

y

s

t

e

m

a

r

c

h

i

t

e

c

t

u

r

e

•

A

n

a

l

y

z

e

•

S

i

m

u

l

a

t

e

r

e

a

l

-

t

i

m

e

b

e

h

a

v

i

o

r

S

y

s

t

e

m

E

n

g

i

n

e

e

r

i

n

g

:

S

o

f

t

w

a

r

e

D

e

v

e

l

o

p

m

e

n

t

:

D

e

s

i

g

n

C

h

a

n

g

e

s

a

n

d

M

a

i

n

t

e

n

a

n

c

e

:

•

O

r

g

a

n

i

z

e

p

r

o

j

e

c

t

s

i

n

t

o

w

o

r

k

i

n

g

l

i

b

r

a

r

i

e

s

•

M

a

n

a

g

e

a

n

d

t

r

a

c

e

r

e

q

u

i

r

e

m

e

n

t

s

•

G

e

n

e

r

a

t

e

p

r

o

d

u

c

t

a

n

d

p

r

o

c

e

s

s

m

e

t

r

i

c

s

•

G

e

n

e

r

a

t

e

s

p

e

c

i

f

i

c

a

t

i

o

n

,

d

e

s

i

g

n

a

n

d

t

e

s

t

d

o

c

u

m

e

n

t

a

t

i

o

n

M

a

n

a

g

e

m

e

n

t

:

M

a

n

a

g

e

/

T

r

a

c

e

R

e

q

u

i

r

e

m

e

n

t

s

a

n

d

M

e

t

r

i

c

s

w

i

t

h

R

T

(

x

)

(

r

e

)

D

e

f

i

n

e

F

M

a

p

s

&

T

M

a

p

s

w

i

t

h

0

0

1

A

X

E

S

E

x

e

c

u

t

e

w

i

t

h

e

x

e

c

u

t

a

b

l

e

o

r

X

e

c

u

t

o

r

G

e

n

e

r

a

t

e

f

r

o

m

F

M

a

p

s

&

T

M

a

p

s

w

i

t

h

R

A

T

A

n

a

l

y

z

e

F

M

a

p

s

&

T

M

a

p

s

w

i

t

h

A

N

A

L

Y

Z

E

R

of an RMap there is a pointer (visually a line) to other maps including FMaps, TMaps, and other RMaps. As we’ve been told by several SOO designers: “FMaps almost fall into place once a

Figure 10: The DBTF System Design and Software Development Process

[image: image8.png]
Figure 11: Actions Menu for Selection of Life Cycle Functions

TMap has been agreed upon by the design team.” This is a result of the natural partitioning of functionality (or groups of functionality) provided to the designers by the TMap system (Figure 7 contains an RMap and Figure 8 contains a TMap, OMap and an FMap). Typically many managers and editors will be open at the same time during the development of a system (Figure 12).

[image: image9.png]
Figure 12: 001 Managers Working Together

The structure of a TMap by its very nature defines several universal mechanisms that support its life cycle. For example, a TMap has an inherent way to be instantiated, to be populated using a GUI, and to be stored persistently. The TMap provides the structural criteria from which to evaluate the functional partitioning of the system—for example, the shape of the structural partitioning of the FMaps is balanced against the structural organization of the shape of the objects as defined by the TMap.

In planning FMaps and TMaps, the more object types can be grouped into common TMap type patterns, the simpler the FMap definitions of the unique functional structure of the system will be. This is because common patterns in the TMap lend themselves to the construction of common functional reusables as generic FMaps (universal FMap operations having polymorphism or FMap structures encapsulating a functional environment in which a nodal family
, operates). Part of this process of abstraction (e.g., finding common TMap patterns and making generic FMaps from more concrete FMaps (Figure 13) is to determine if more abstract mechanisms can be formed and derived from existing mechanisms, either from earlier libraries or from newly defined FMaps and TMaps. Another part is to continue to look for commonalities within the new mechanisms and to remove redundant ones (by making and then referring to a common reusable definition). This process continues until all functions of the FMaps and all types of the TMaps have been decomposed to the most primitive levels (primitive functions and primitive types, respectively); primitive, that is, with respect to the particular layer of abstraction in question.

[image: image10.png]
Figure 13: User Defined Reusable FMap Structure

User Interface. The GUI environment (as well as its interface to the Internet) is tightly integrated with the definition (and development) of any 001 application. GUI (support for Motif or AWT) is provided while preserving traceability, interface integrity and control, seamlessly between the GUI part of the application and the other parts of the application. Its automatic data-driven interface generator supports rapid program evolution. Layers of loosely to tightly coupled GUI integration are provided. At the lowest level of integration, a set of primitive data types is provided to access the power of Xlib, Xt, and the Motif windowing system. Each of these layers is defined with primitive operators and types that match the API for that layer. At this layer, all the raw power of the windowing system may be accessed (in Java, this could be AWT or Swing).

An intermediate layer above these base level API's (called GUI and GUIELEMENT) is provided that encapsulates most of the repetitive operational aspects of Widget management and construction of X widgets. Since this layer was defined as SOOs, the OMap Editor can be used to specify and view information about the window hierarchy. In addition, the GUI objects may be persistently stored as OMaps to be used during the initialization, modification, or analysis stages of GUI development. The GUI technology used to implement this layer is hidden. An applications built on this layer is independent of its implementation (e.g., an implementation in Java using AWT).

The highest layer is tightly integrated with the TMap system. It is at this layer that the OMap Editor is always available to an application to populate and manipulate objects based on the TMap. The object editor has standard default presentations as well as a set of primitive operators that allow a user to use its presentation features to develop interactive GUI's that are tightly coupled to the TMap (e.g., automatic generation of a system of menus from a TMap description).

Other screen description technologies (e.g., WYSIWYG GUI builders) may also be used in conjunction with a translator of their export capabilities to a DBTF GUI specification (for example a translator was developed to go from Motif UIL as an output of ICS's Builder Xcessory product to an OMap screen description usable by the OMap editor for its GUI).

In addition to the above GUI layers, users can define their own primitive type interfaces to user chosen API's, providing the end user with freedom and flexibility of choice. Throughout all of these choices the API's are integrated with the use of FMaps and TMaps.

The OMap Editor can be used throughout a system's development in major ways: as a general object viewer/editor, and as a full end-user interface. The OMap Editor chooses appropriate default visualizations for each data item to be displayed. For a specific OMap, it manages the visualization of specific data values for the user and the modification of the OMap by the user.

Several things drove the creation of the OMap Editor: many applications center around the display and modification of data; the visualization of data structures may be generated and managed automatically by understanding the semantics of data description; automation is made useful by a wide array of configuration avenues, for both the developer and end user; and the system may be configured in many ways. A set of reasonable defaults is always provided that allows rapid prototyping and gives the developer a concrete starting point.

The TMap is the repository for information about the structure of data and implies the operations that may be performed on it. The visualization of data created from the TMap consists of interface elements that display the values in the OMap and interface elements that trigger primitive functions on those values. For example, an ordered set might be depicted as a list, with buttons for insert and extract; a Boolean might be visualized as a toggle switch.

For each primitive and parameterized type, there is a group of modes of visualization from which to choose. For example, a number can be visualized as a text item with the number in it or a dial that can be turned to the desired value. In addition, advanced users can add new primitive and parameterized types. The OMap Editor produces forms-entry screens, much like conventional database screen painters, but supports the full semantic capabilities of a TMap. It will generate nested screens for arbitrary depth type hierarchies and has full support for 001AXES parameterized types including OSetOf, OrderedSetOf, TreeOf, OneOf and TupleOf [2]. The developer has control over the data that may be viewed or modified by the user. Data in the OMap may be reorganized, specified as view-only, or completely hidden from the user (Figure 14).

Using data type OMapEditor (the API to the OMap Editor functions), the developer has complete control over visualization and data modification from within the application. Here, the developer can add functions to capture run-time data events (like trigger functions), perform constraint checking, data analysis, and specialized graphics manipulations. Besides data specification, the developer has access to many graphical configuration options. Some of these may be carefully controlled while others may be left for users to change. A common capability allows end-users to save the locations and sizes of their windows between sessions.

Type OMapEditor provides an operational base upon which WJS's view server is constructed. The view server mixes form (presentation) and content (e.g., OMap object values). This consists of (X)HTML with embedded 001 query statements (to define the content). The embedded query statements select the content using control statements (e.g., to select a set of elements to be

[image: image11.png]
Figure 14: OMap Editor in a Windows Presentation Mode

gathered) and object selection paths (OSP) to identify some location in an OMap, the tree of objects instantiated from a TMap. The OSP is a unique path down the tree (based on the node names of the TMap) to some descendent child object node. An OSP is like an XPath expression. These query statements in essence target the information content to be retrieved from the OMap content database. The view server generates dynamic HTML based on these embedded OMap query statements and associated OSPs to be used for query and report presentation by a browser (Figure 15).

Analysis phase. The second part of the generic process is referred to as the Analysis phase (often overlapping in time with the Definition phase, the overlap is due to the interactive aspects of this phase), beginning when 001AXES definitions are provided as input to the Analyzer. This includes static analysis for preventative properties and dynamic analysis for user-intent properties. Since 001AXES is used to define inherently modular components, a small fraction of a system can be taken fully through analysis, long before the rest of the system is even conceptualized. When the Analyzer detects ambiguity (Figure 16), it provides precise information to the user as to the nature of the inconsistency or lack of logical completeness (consistency and logical completeness are prerequisites for integration between models). This phase is deliberately similar to having a DBTF expert look over your shoulder as you develop a

[image: image12.png]
Figure 15: A WJS Template for Creating an HTML Page

system. In order to analyze in 001, the user selects the option, Analyze, from the Actions menu from within the Definition Manager.

The Analyzer is involved in many life cycle tasks, insuring completeness of functions and object types, and making sure definitions are defined until they stop at primitives. It insures consistency and traceability by making sure interfaces are correct. The Analyzer is also involved in overall integration by checking across independently developed modules and definitions of library modules. Many tasks of management are incorporated into this analysis process.

In the first part of analysis, models are submitted to the Dataflow Structure Calculator to provide, automatically, the structures with a static analysis of the local data flow for a given model. The Analyzer can then be used to ensure that each model or set of models was defined properly and follows the rules of 001AXES. For example the Analyzer uses static analysis to make sure the rules of the three primitive control structures [2] are followed; it also makes sure the rules

[image: image13.png]
Figure 16: The Analyzer Discovers Errors in a Definition

inherited by abstract user defined structure from more primitive structures are followed. This ensures no data conflicts, timing conflicts or priority conflicts and no redundancies, ambiguities or logically incomplete definitions. Other types of analysis are performed using 001Engineer's Xecutor, discussed further below.

Implementation Phase (resource allocation): a software implementation consistent with the model is generated—for a selected target environment in the language and architecture of choice. Once a specification is determined to be consistent and logically complete by the Analyzer, it is handed over to the generator component, i.e., the Resource Allocation Tool (RAT) if it is intended to be transformed into a software system; or, it is handed to the Xecutor for simulation studies. If it is determined to be incorrect in either type of analysis, the user returns to the definition phase and changes his specification using 001AXES. In order to generate code in 001, the user selects the option, RAT, from the Actions menu from within the Definition Manager.

The RAT automatically generates complete, fully integrated, fully production ready code for any kind of application whether it be web based GUI, database, communications, real time, distributed, client server, multi-user or mathematical algorithms. The Java code, C code and English have been automatically generated by the RAT from the same FMaps and TMaps. (Figure 17). Instead of automatically supporting the user to do the work, manually, as most traditional tools would do; the tool suite does the "real work" and generates a complete software solution. Even if a more traditional tool were to automatically do some of the real work, it would need to be finished or integrated with other code, manually. There is no manual work to be done to finish the coding task with the RAT.

[image: image14.png]
Figure 17: Automatically Generated C, Java and English,

Each from the Same FMaps and TMaps

RAT generated code inherits all the SOO qualities from its 001AXES definitions, including interface correctness and traceability; from and to the requirements and design, from whence it came, and within the code layer itself.

The type part of the RAT generates object type templates for a particular application domain from one or more TMaps. The code generated by the functional part of the RAT, from one or more FMaps, is automatically connected to the code generated from the TMaps and code for the primitive types in the core library, as well as—if desired—extensions to code libraries developed from other environments (e.g., J2EE).

The generator can provide output information that can be used as input by other tools or for testing (such as generating code instrumented to determine path coverage of the decision alternatives taken during the execution of a system). This feature can also be used as another means of rapid prototyping for systems design studies. User-tailored documents can also be configured to be automatically generated by the RAT—with selectable portions of a system definition, implementation and description; and projections such as parallel patterns, decision trees and priority maps.

Having a completely open architecture, the RAT is illustrative of component based development. Because 001's environment is open, it allows for interfacing to existing or future legacy code. Several options exist for such an interface. Interfaces or wrappers can be placed around existing or legacy code to create primitives for the generation environment to automatically code to; systems can be defined to have universal FMaps (having polymorphism) that result in code directly embedded as in-line code; legacy code can call and send input to code generated by the RAT at execution time; and the generator can be configured to generate language specific statements (such as "+") or statements that interface to the legacy code. In addition, shell scripts within the tool suite environment are open to end user modification (e.g., modification of link and compile scripts).

The Java RAT Environment

RATting has two major aspects: mapping 001AXES TMaps and mapping 001AXES FMaps to the target language to be generated. The RAT supports openness by allowing a user to tailor the target language syntax being generated and extend 001AXES types by layering them onto corresponding target language types (i.e., called 001AXES layered primitive types). Tailoring of the RAT is accomplished using a graphical Syntax Generation Tree (SGT) language specifically designed for easy specification of syntax transformations of a 001AXES specification. As an example, the Java mapping of 001AXES types makes the following correspondences:

-
A 001AXES primitive type corresponds to a Java primitive type or to any Java class available in any of the wide range of packages supported by Java vendors.

-
A 001AXES abstract type (with a different meaning than in Java or C++) corresponds to a Java top-level, nested, or inner class depending on the TMap type context.

-
A 001AXES structured type (traditionally called a parameterized type that may be polymorphic) corresponds to a Java extendable class that provides inheritable polymorphic methods for the 001AXES abstract type that is the head of the TMap type nodal family.

In order to layer a 001AXES primitive type onto a Java class, the user maps each of the primitive operations of the type to its corresponding implementation as a Java instance or class method. Because there is a fairly close correspondence between a 001AXES type and a Java class, much of the 001AXES type specification can be anti-RATted from Java (i.e., the process of reverse engineering or abstracting code into a system specification) using an import facility built upon the Java foundation and reflection class packages. This import facility allows a 001 user access to Java classes.

Since a Java class code specification that has been raised to a 001AXES code independent type specification will be incomplete according to the formal requirements of 001AXES, information must be provided to complete the process. One example of the incompleteness of a Java class specification becomes apparent in the identification of a method's input and output objects. This stems from the problem that a method may have many arguments, some of which may be input objects and some of which may be output objects. While many output objects can be determined by the form of the method, some outputs can only be determined by reading the documentation of the method. For an automated anti-RATting tool, the user must identify some of the method output objects. As an example, consider the following correspondences:

Type: StringBuffer.

Primitive Operations:

StringBuffer=k:StringBuffer(Any); [* object creation *]

StringBuffer-1m=setCharAt:StringBuffer(StringBuffer-1,int,char)

CharArray-1m=getChars:StringBuffer(StringBuffer-1,int,int,CharArray-1,int)

...

public class java.lang.StringBuffer extends java.lang.Object{

//constructors

public StringBuffer();

//instance methods

public synchronized void setCharAt(int index, char ch);

public synchronized void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);

...

In this example, the 001AXES primitive operation, k:StringBuffer, corresponds to the Java constructor, StringBuffer();. The differences in syntax are minimal and given a basic Java constructor of this form, it is easy to construct the 001AXES primitive operation associated with it. They differ in how they are used in an application. In 001AXES, a primitive operation is used as a function, for example:

buf=k:StringBuffer(x); [* where x is of type any *]

In Java, the corresponding constructor is used as:

buf=new StringBuffer();

This mapping is automated by the anti-RAT import facility. Whenever code is generated from an FMap, the SGT form "<@outputname-1>=new StringBuffer();" is applied by the RAT. When "<@outputname-1>" is replaced with the primitive function's first output, buf, the proper Java code is produced.

Most of the second primitive operation, "setCharAt:StringBuffer", can be inferred from the instance method, setCharAt. The "this" reference maps to the "StringBuffer-1" part of the primitive operation's type mapping. The setCharAt instance method arguments are mapped to the other two input types, for example:

int index, char ch
==>
int, char

The missing piece of information is the "m" (the semantic component of "StringBuffer-1m") that specifies the object has been modified. To determine this "m" component, a user must read the documentation associated with the setCharAt method.

The "m" specifier in 001AXES is really a symbolic shorthand for a commonly used axiom or constraint on a primitive operation of a type. Since the Java language does not support axiom or constraint specifications, it is not surprising that this part of the 001AXES specification has to be added in by the user manually.

CharArray-1m=getChars:StringBuffer(StringBuffer-1,int,int,CharArray-1,int)

public synchronized void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);

The last mapping example shows that an automation can not always determine the output type. For example, in the Java specification of getChars, the "void" statement states that nothing is returned from the method. However, there is one output object type from a functional perspective. The implicit "this" could be used as a pass through reference only object, but this is always the case for instance methods. In this case, the instance method does not modify the instance object, so it is not necessary as an output to the primitive operation. But, a 001AXES primitive operation must have at least one output. The documentation of the method provides us with a natural functional output; it is the "char[] dst" argument. This argument, as a reference object, is modified by getChars, so from a functional perspective, when an input state is modified, it must be returned as a new output object state. This mapping, for example:

char[] dst
==>'s CharArray-1m =...(... CharArray-1 ...),

must be identified by the user who gathers this information from the documentation and provides it as input to the anti-RATting process.

Translation of an FMap into the target language is a mapping between the grammar of 001AXES and that of the target language. This takes into consideration the capabilities (i.e., semantics) of the target language as well as its syntax. When mapping to a traditional sequential code language such as Java, many aspects of 001AXES's real-time rich language semantics are ignored (e.g., priority, interrupt or event driven characteristics). In 001AXES, these real-time characteristics are built into the language (i.e., as part of its grammar) as opposed to providing them as add-on data type capabilities (i.e., as a lexical element) as they are traditionally done (e.g., threads). In 001AXES, threads are not needed as an additional type, since 001AXES is event driven and inherently defines multi-threaded control for all specifications, without the user having to be aware of it. When generating to Java, since Java is inherently sequential, the Java generated code mapping uses a traditional approach subset (e.g., utilizing the Thread, ThreadGroup classes) rather than the 001AXES native threaded event driven semantics.

The RAT generated target language syntax for FMaps falls into two groups: control syntax for making decisions and loops; and call syntax for invoking operators and calling methods. In the current Java mapping, for example, all methods are defined in a generic way; so that only inputs are passed as arguments, and all outputs are returned via the return statement. When there are many outputs produced by a 001AXES function, a constructor is generated to return all the output objects as an Object whose return class name is generated from the sequence of types of the outputs of the 001AXES function. If only one output is returned from the 001AXES function, then a new return class is not generated, since Java naturally supports this case.

Assume a 001AXES function producing several outputs, for example:

db,a=add_customer_public(db0,a0)-op-

This results in the following return class being generated:

public class OO{

public Object o1;

public Object o2;

public OO(Object i1,Object i2){

i1=o1;i2=o2;}

}

Inside the method implementation of add_customer_public an OO object is returned as:

public static OO fadd_customer_public(db0, a0){

...

return new OO(db, a);

And finally, the following code is generated for the add_customer_public method use:

OO out14=fadd_customer_public(db0, a0);

db=(publicdb)out14.o1;

a0=(action)out14.o2;

Following is the portion of the Java SGT responsible for the FMap generation of the use of the generated return class (Figure 18).

As mentioned earlier, the generator component is accessible to a user to tailor it for his own brand of generated code, documentation or projections on an as needed basis. For example, different RAT configurations can be used to generate different styles of code (e.g., embedded code, IDL, XML DTDs).

The RAT open architecture extension of 001AXES base types can be used to interface to an architecture of choice (e.g., Java J2EE) by making a set of 001AXES primitive types for each of the service technology API's of interest. It can be configured to interface to a system at all

[image: image15.png]
Figure 18: Portion of a Java SGT

levels, from high levels (such as a JDBC API or JavaSpaces) to low levels such as operating system calls (e.g., POSIX or the Java Virtual Machine instruction set). In so doing, the user maps a 001AXES primitive operation of a primitive type to some code implementation interface (e.g., a Java instance or class method). There is no limit to this type of extension other than that of the current software industry capabilities. This type of extension allows one to access database, graphics, client/server, legacy code, operating system, communications systems, Internet based systems and machine environments of choice.

Previous extensions have included databases (such as Oracle, SQL Server or Versant), operating systems (including UNIX, Linux and NT), user interfaces (including Motif and HTML), communication protocols (including TCP/IP and CGI), web packages (such as Front Page) and legacy code of choice; there is no need to lose time and resources to port to a new environment. Examples of interfaces currently available are UNIX including Linux, Motif, NT and TCP/IP. As can be seen from above, a choice of code generation from the perspective of language can be made using a single solution specification (also user configurable).

For a software system, the generator performs automatic generation of code or documentation (Java, C, English, or some other kind of code for which the generator has been configured) to allocate the definitions found in the 001AXES specification. Languages configured for the RAT have included APL, Lisp, Pascal, FORTRAN, ADA, COBOL, C, C++, Java and English.

During this phase, code (or documentation, testing information, etc.) is automatically generated (or regenerated) for any part or type of a model in a system (and for any part of the system that has been changed). Obsolete code is automatically replaced or removed and new code is integrated into the current base of managed code without intervention by the developer (except in the case when a developer is extending the RAT's environment by interfacing to pre-existing service technologies).

Once the generator is configured for a new environment, a system can be automatically regenerated to reside on that environment. Thus the RAT becomes an agent of reuse as well as an agent of reverse engineering (from a more modern perspective) across its target code implementations. For future modernization projects, rather than invest all the time and money required for significant training and reverse engineering, one could opt instead to use—and continue to use—a single definition language and automatically generate the latest implementation environment. For example, developments using the tool suite have taken place on UNIX (Linux) and then were automatically cross targeted for applications residing on architectures such as NT, IBM Mainframe, and the AS 4000.

If the selected environment has already been configured, the RAT selects that environment directly; otherwise, the RAT is first configured for a new language and architecture. The set of 001AXES definitions from which code is generated to one architecture (e.g., C) can be used to regenerate code to another architecture (e.g., Java). This means for example, that developers (who are anxious to start development and want to use a new language but do not have its compiler and support tools or its configuration yet available) can define their system in 001AXES, generate to an existing language (e.g., C) and develop part or all of their system in this mode; they can then regenerate to the new language (e.g., Java or C#) using the same 001AXES definitions when the new compiler and support tools become available.

Each new configuration of the RAT becomes a reusable architecture component for layering a DBTF application onto a new architecture. In a relative sense the earlier version can be looked upon as legacy code to the new one. The implications are that already developed systems are never obsolete just because a new language or architecture appeared on the scene.

Once a system has been generated by the RAT, it is ready to be compiled, linked and executed. The generated code can be compiled, linked and executed on the machine where the tool suite environment resides or it can be sent over to other machines for subsequent compilation, linking and execution. The Link Actions menu option performs both compilation for all code being referenced and then links an executable file according to the Build Manager's settings. The link and execution tasks are selected and performed within the 001 environment. To link, the user selects the option, Link, from the Actions menu from within the Definition Manager.

Execution phase. The last part of the generic life cycle is the execution phase. To execute an FMap operation, the user selects the option, Run Executable, from the Actions menu from within the Definition Manager. This consists of performance testing (during which user intent errors are located) or final system operation (Figure 19). If the real system is software, it is ready to be tested dynamically for user intent errors or be to be placed into operation. During performance testing, each time a user intent error is found, previous life cycle phases are repeated (altering the 001 AXES specification and redeveloping the application with 001) until the intended behavior is embodied in the system.

If the real system is hardware, enterpriseware or peopleware, the generated system serves as one form of simulation (001Engineer's Xecutor component serves as the other form of simulation at the definition level) upon which the real system can be based.

Before the Fact Testing

A typical way to test within a traditional development environment is to build a system, then test it—i.e., after the fact. The issues and problems of after the fact testing are well known by experienced managers, test engineers and developers. In contrast, testing within the DBTF paradigm, by its very nature, is an integral part of each of the generic phases: definition, analysis, implementation and execution.
Use of the "no more, no less" philosophy of DBTF removes the need for the majority of testing that would have been necessary with traditional techniques. This is largely because of reuse inherited with the use of 001AXES and that which has become automated within the 001 Tool Suite; and because all objects in a DBTF system are under control and traceable; again, obviating the need for another set of tests that are needed in a more traditional setting.

[image: image16.png]
Figure 19: Running the Client Record System

Following are more specific reasons why this is the case:

Correct use of 001AXES eliminates (or prevents) the majority of errors, including all interface errors (which account for over 75% of all errors), at definition time; i.e., before implementation. Should the language be used incorrectly, 001AXES provides the necessary information to the Analyzer to find all the interface errors. Testing (dynamically, that is) for errors which fall into the category of interface errors is no longer necessary. Testing for other types of errors is minimized: there is less chance for some of them to exist (through implicit use in the formal systems language and the tool suite) and there is a high degree of inherent reuse in the language (thus avoiding errors that would have occurred if unnecessary systems had been developed).

All mechanisms of 001AXES contribute to these kinds of preventative testing. For example, TMap properties ensure the proper use of objects in an FMap. A TMap has a corresponding set of control properties for controlling spatial relationships between objects. One cannot, for example, put a leg on a table where a leg already exists; conversely, one cannot remove a leg from the table (or a Place in a Customer record) where there is no leg; a reference to the state of an object cannot be modified if there are other references to that state in the future (since a 001AXES variable refers to an object state, not the object directly); reject values exist in all types, allowing the FMap user to recover from failures if they are encountered.

Integration testing is minimized; since all objects within a system are by their nature integrated, another example of inherent reuse. Thus, integration testing, as we have known it in a traditional environment, is no longer needed. Since all code is automatically generated from FMaps and TMaps, no errors are made in going from design to code (i.e., there is no longer a manual process of coding). Again, fewer errors to test for. Other components such as 001Engineer's requirements traceability component automate processes of going from requirements to design to tests to use cases to other requirements and back again. The need for traditional testing, which helps make sure the implementation satisfies the design and the design satisfies the requirements, is minimized.

To support testing further, the developer is notified of the impact on his system of any changes; those areas that are affected (for example, all FMaps that are affected by a change to a TMap) are demoted.

Since the generator can be configured to generate to one of a possible set of architectures, no errors will be made because of a manual process of conversion; since conversions will be performed by the generator automatically. Again, fewer errors to test for.

Sometimes testing and analysis are indistinguishable processes. Such is the case when the Analyzer performs inspection by checking for consistency and completeness of the models. Semantic errors, interface errors, and data flow errors are found by such static checking. A classic example of DBTF properties in 001AXES is that which inherently forms the basis for the movement of some dynamic testing into the realm of static testing. Testing in 001 for relative timing of events, thread activation and priority interrupt scheduling is a case in point; since these timing aspects of a system have been moved from traditionally residing as a type (i.e., an open class lexical element in a language) to residing in the grammar (i.e., in the closed class part of a language) in 001AXES. For example, all functions in a 001AXES specification are uniquely ordered. With an Include structure (the primitive control structure in 001AXES for independent functions), if a lower priority child is executed and its higher priority sibling receives enough input to execute, then the lower priority child gives up its resource. Thus, thread scheduling is inherent in any 001 developed application.

Dynamic Testing: for those tests which remain (far fewer test cases than would be needed in a traditional environment), testing itself can be viewed as a system of systems in terms of FMaps and TMaps: the environment of the target system as a system, the structures of testing scenarios including use cases as a system, and each instantiation of a scenario (a set of test cases) as a system.

Simulation and execution are examples of dynamic testing. Test cases, which can be defined by FMaps and TMaps, can be executed to test against requirements in simulated environments as well as the target system. Simulation can also be used for environment modeling or testing the target application. Specific constraints on the dynamic behavior of the system, such as sequence and data dependencies (which can also be defined by FMaps and TMaps) can be checked at run time.

Debugging can be performed at the code level with the use of the native debugger of the chosen architecture. 001 automatically generates a unit test harness code wrapper around a function to be executed. This incorporates data entry prompts for primitive objects and the OMap Editor as a data entry facility for populating complex objects. The code generated by 001 has variable and function names that closely match their corresponding names in the design specification of FMaps and TMaps, setting the stage for life cycle traceability. The debugger is used to set breakpoints and examine values of simple object variables. The object editor (with its windowing interface as described earlier) is used to examine complex OMap objects (from within the debugger) and to modify their values or load other OMap objects having test values. Testing is also supported by ASCII output generation showing the object decomposition in terms of its structure and leaf node values of OMap objects from the debugger. The OMap Editor is used to perform testing by allowing a user to view and modify an OMap object from within the debugging environment. This lets a user determine the contents of any complex OMap object and to make changes to perform experiments while debugging the system. The following commands are used from within a typical debugger to invoke the OMap Editor and to print an ASCII representation of the object to file:

print debug_OMap(CLIENT1)

print ascii_OMap(CLIENT1.self,"./client.ascii")

The RAT automatically generates test code (that inherits rules from whence it came) that finds an additional set of errors dynamically. For finding user intent errors, at runtime, dynamic testing is supported by invoking the object editor on objects from within the debugger of the native operating system. This allows one to perform "what if" experiments by changing an object on the fly and to load and store persistent objects. Runtime constraint tests (these are really universal axioms that must hold for objects to be well formed) are automatically generated to validate the universal constraints that "two objects can not be in the same place at the same time" and "the fact that you can't get something from nothing". For example, it would not allow an engine to be put into a truck (or, as mentioned earlier, a leg onto a table or a Place into a Customer record) that already had one, nor allow an engine to be removed from a truck with no engine. A unit test harness for testing each object and its relationships are also automatically generated by the RAT.

An automatic user interface is provided with the OMap editor for populating and manipulating complex objects, including storage and retrieval for persistent objects. This provides the ability to test the target system at any input output interface with predefined object test data sets.

Some kinds of testing that remain (e.g., code coverage analysis) are usually performed in later phases of the life cycle. The need for code coverage testing is minimized, since the use of 001AXES for defining the system ensures no interface errors. This means there will be no logic in danger of not being used properly, due to interface problems in the models; since, if the model contained an interface error, it would be caught by the Analyzer before the code was automatically generated from that model. This eliminates the need for wire-tracing-oriented tests that analyze code produced with traditional environments. Since all code is automatically generated from FMaps and TMaps the chance for a human to miss either creating the code for part of a model or interfacing incorrectly to the other code in the system is eliminated.

For the test coverage analysis that remains, test coverage analysis can be performed by selecting a configuration of the generator component to generate coverage analysis FMap (and TMap) implementations for a particular sub-system to be tested. The topmost FMap of the sub-system has an associated set of test cases in which each test case represents the inputs (either primitive object values or OMaps) to run one scenario (i.e., a performance pass) of the system. After defining the test cases, the sub-system is executed. The generated code logs each decision alternative taken in each FMap with a reference to the current test case for all the test cases defined. When the test cases finish running, the output objects for each test case are stored (for possible pre/post condition analysis) and an analysis is automatically performed to determine the coverage within the system provided by test cases. This coverage analysis results in a listing of the percentage of coverage (the number of paths taken over the number of potential paths), and a listing by test case of the FMap decision alternatives taken. With this approach, regression testing is performed simply by re-running the set of test cases for a particular subsystem.

Special analysis functions can be developed in terms of FMaps and TMaps as part of the test system to analyze the results (e.g., to analyze the post conditions as output OMap objects and in terms of the pre conditions as input OMap objects to see whether or not a particular function under test behaves as expected). The analysis FMap examining the pre/post conditions of a system under test can use test cases from the coverage database; or, the analysis FMap can be a stand-alone special purpose test with its own inputs separate from those of the coverage database test cases.

Using DBTF and 001, the process of developing a software system to test software is the same as the process of developing any software system [8]. A solution for how to develop one solves the other. This includes the same generic phases, language, tools and testing techniques (i.e., testing the application system is the same generic process as testing the system that tests the application system). The set of tests developed itself as a DBTF system can become a set of reusable tests for other systems as well. The same can be said about the applications it will be used to test.

FMaps and TMaps are used to model the testing system. Test cases are stored as OMap files providing pre-and post-conditions for the testing of FMaps in the target system. Just as with the application being tested, code is automatically generated from the FMaps and TMaps in the testing system. The tests are then ready to run. The results are captured as OMap files. Special analysis functions can be developed in terms of FMaps and TMaps as part of the test system to analyze the results (e.g., to analyze the output OMap objects and the input OMap objects to see whether or not a particular function behaves as expected for a particular test). The analysis FMap examining the pre-and-post-conditions of a system under test can use test cases from the coverage database; or, the analysis FMap can be a stand-alone special purpose test with its own inputs separate from those of the coverage database test cases.

Automatic documentation. The documentation environment of a 001 developed system is tightly integrated with the definition of the system. To document a system the user first selects the option, Library Settings..., of the Utilities menu from within the Library Manager for a selected library. This brings up the Environment Manager which is used to set the characteristics for the selected library. The user toggles the documentation templates to be generated under the title "Documentation Resource Allocation Tools" from within the Environment Manager. When a user analyzes a 001AXES definition from within the Definition Manager for the selected library, documentation is automatically generated by the RAT, wrapping in the user's own comments should it be desirable to do so. That same 001AXES definition can itself become part of that same generated document (Figure 17). Documentation from the various model viewpoints of a system can be collected and integrated into the documentation of the system. This means for example that a resulting document could also include descriptions of the requirements, the testing, developer's issues and developer's decisions made about the design of a system.

Configuration Management. The Baseliner facility provides version control and baselining for all RMaps, FMaps, TMaps and user-defined reusables, including user defined FMap and TMap structures. To set up version control on a library, the user selects the option, Set Version, from the Utilities menu from within the Definition Manager. The Build Manager provides configuration control and manages all entities used in the construction of an executable. This includes source files, header files, and context information about the steps taken to produce the executable. This facility also provides options for controlling the optimization level, debugging information, and profiling information of the compiled code. To set build characteristics, the user selects the option, Link Options..., from the Utilities menu from within the Definition Manager.

Maintenance. With traditional tools, after shell or partial code has been automatically generated, programmers add or change code manually; as they write more code, it becomes more difficult to regenerate the shell or partial code from changes in the requirements, because their code would be destroyed or made obsolete; the maintenance process becomes even more manual as the software evolves with 001.

The Maintenance Phase is simply redesign and redevelopment (iterations of development phases). DBTF systems are defined to handle changes both during development and operation. Because all objects in a 001AXES system are under control and all objects are traceable, there is more flexibility and less unpredictability than with traditional systems.

Again, with 001, the developer doesn't ever need to change the code. SOOs are defined to handle changes both during development and operation, providing for more flexibility, yet less unpredictability than with traditional systems. Application changes are made to the specification—not to the code (whether it be for simulation or for software). Changes to the architecture of the application are made to the configuration (either the SGT or layered primitive types) of the generator environment (which generates one of a possible set of implementations from the model)—not to the code. Once a change has been made to either the specification or the architecture configuration only that part of the system that has been changed is regenerated and integrated with the rest of the application (again, automatically). The system is then automatically generated, compiled, linked and executed without manual intervention.

Though each of these portions of the generic life cycle are conceptually distinct, in practice, they tend to overlap considerably. The enhancement of productivity provided by automated analysis and automatic generation encourages rapid-prototyping style development (or eXtreme Programming). Often, a skeletal representation of the target system is defined first, to be subsequently fleshed out with greater functionality. The user is allowed to see the results of his ideas clearly as soon as they are consistent and logically complete (i.e., the 001AXES specification does not have any missing pieces, from a logical point of view).

System Engineering

In the previous sections, we concentrated on software development. The next section describes system designer/system engineering-related tasks within a 001 environment. Although the developer's tasks and the system designer's tasks often overlap, an application's life cycle would typically begin with the system design first, and the system design would need to be completed before all the developer's tasks are completed.

Requirements Capturing

A typical system design process begins with capturing requirements which are often in the form of a customer-supplied English document. If requirements are defined with English or a traditional requirements language (instead of with 001AXES), the requirements can then be modeled in 001AXES before proceeding to the design specification stage (where the system design is defined in 001AXES). To support the modeler in this endeavor, the automatic import facility of 001 reads the user's requirements document and builds an RMap of FMaps (including a beginning sketch of FMaps and TMaps), matching the requirements, to get a head start on the development of the FMaps and TMaps for the requirements.

The requirements component, RT(x), automatically parses the requirements document for key expressions (for example, “cash management system”) and key words (for example, “shall”). An RMap is then automatically generated which essentially is an outline of the sections in the requirements document along with information the user chose for the purpose of establishing traceability and gathering metrics throughout the life cycle. Each node in the RMap corresponds to an FMap and its automatically generated functions which continue to outline the paragraphs of a section of the requirements document. A sentence may contain one or more requirements. An FMap leaf node function under a parent function associated with a paragraph is associated with a requirement. Each requirement is uniquely identified and is numbered with a requirements identifier used to make correspondences to the target system which will be defined by the user during the design process. As part of the design process, reusables can be used to fulfill some of the requirements associated with the nodes on the RMap. For others, some FMaps and TMaps may already have been defined for this system. Others are yet to be defined.

The modeler decides how much detail to provide in terms of FMaps and TMaps for the requirements. It becomes a tradeoff for the requirements engineer. If it is important to have quality requirements which save on confusion and time later (both of which contribute to saving money), more detail will be provided in the FMaps and TMaps during the requirements phase.

Requirements Traceability: A requirement in a definition (e.g., the currently selected requirement in an FMap or a TMap) can be graphically connected (via RMap intra/inter-system model relationship connectors) by the system designer to other definition nodes (e.g., another set of requirements, a set of tests, a set of use cases, or a target system model) for the purpose of tracing that requirement to the other models. When an FMap is analyzed and it is determined that it needs other definitions (e.g., another FMap operation or structure), the RMap is automatically redrawn to reflect this dependency. Any preliminary dependencies that the user has manually drawn in are removed if they violate the consistency of the internal FMap dependencies as determined by the Analyzer. A traceability matrix can be automatically generated for any combination of RMap model relationships to provide traceability information. An RMap is printed as an encapsulated postscript file and able to be used within a users generated documents. This supports a user in documenting system traceability.

With the RT(x) concept, a system design can be seamlessly integrated to software. RT(x) provides users with more control over their own requirements process. It allows users to enter requirements into the system and trace between those requirements and corresponding FMaps and TMaps (and corresponding generated code) throughout system specification, detailed design, implementation, testing and final documentation. A user can define any relationship between objects and describe the complex dependencies between these objects. This allows the user to query on, for example, the relationships between a set of requirements and its supporting specifications, test cases and implementations. The requirements editor allows the user to specify, query and report on a database of information about a model (and its relationships) as well as about its development (and its relationships).

Requirements Analysis: A requirements definition can have additional information about it and its relationships. Every node on the RMap has the ability to have information about it, its development and relationships (within and between life cycle phases) associated with it provided by the user. This information, together with its formal definition, is used for gathering metrics about the system and its development, providing a mechanism to trace from requirements to code and back again, ensuring that the implemented system meets the requirements. This information could include who is responsible for the object in question (e.g., who created this requirement or which target system function implements this requirement); constraints; TBDs; other requirements from the user; issues, and information about the contents of the model itself. The RAT can use this information to generate metrics and reports on the progress or state of the development of the current target system and its relation to the original requirements.

Detailed Design Document Generation

Documentation (e.g., detailed design documents) can be automatically generated (when analysis is completed or when needed) from the same SOO specifications that code is generated from. The documentation for the model is therefore always consistent with its generated code. Integration of documents and code is maintained by the Baseliner facility.

Documents can be generated using document templates or document artifacts corresponding to life cycle phases. This documentation (partial or complete) can then be imported into document publishing software for processing and/or direct incorporation into the final document.

System Analysis and Design

Simulation. If it is desirable to simulate the requirements, the FMaps and TMaps need to be defined to the level of primitives (functions for FMaps and types for TMaps) at their leaf nodes. The higher the level of the primitives, the higher the level of the requirements that can be simulated; the lower the level of the primitives, the more finely grained will be the simulated requirements. In 001, primitive types need not have an associated implementation for simulation. A user only has to define the primitive type (e.g., its name and its set of primitive operations). Implementation tradeoffs are studied by identifying potential implementations for a primitive operation. FMaps and TMaps can be executed directly by the runtime executive component, the Xecutor (Figure 20).

The Xecutor can be configured to perform real-time distributed system simulation and analysis and/or it can be configured to be a stand-alone real-time distributed object executive (DXecutor). The functionality of the Xecutor can be extended by dynamic loading of external modules. The Xecutor component understands the real-time characteristics inherent in the grammar of a 001AXES definition (e.g., all functions to be executed have a unique priority). To perform simulation, the system is defined in terms of what it does (the functional architecture), how it can be done (the resource architecture) and who does what when (the allocation architecture).

To understand the system, the user defines time and other engineering characteristics of the system so that it can be analyzed. For example, to determine the viability of particular scheduling constraints on the system the user defines constraint (e.g., an interval within which a function must complete once started) and timing characteristics of the primitive functions (e.g., a fixed time or an algorithmically computed time using a random number seed to provide for variances). Another feature is a behavior calculator that allows a user to rollup information (characteristics of the system associated with a primitive function such as cost and risk) to its parent function which collects a sum of each child's value for each type of characteristic. This rollup process continues until a parent with a monitor is reached to capture and log its subsystem characteristics.

[image: image17.png]
Figure 20: Xecutor Running a Real-Time Simulation Experiment

In order to perform system analysis, the system designer goes through an iterative process of defining simulation experiments. System characteristics and system definitions continue to be revised until the system satisfies the engineering constraints of the system requirements. Along the way the system's requirements might need to be changed to further constrain or relax system needs due to unforeseen events (such as the availability of certain hardware not being completed on time). At this point the system is ready for full detailed design and full-scale development using a process of recursive refinement. This refinement process continues as more aspects of the target system are added throughout its development process (e.g., with its implementation, deployment, maintenance and evolution). If the system being simulated has been designed to be a production software system, the same FMaps and TMaps used for the simulation can be used to automatically generate the production code. The Xecutor can be used to analyze processes such as those in a business environment (enterprise model), manufacturing environment (process model), or a software environment (e.g., searching for parallelism in an algorithm).

Mapping Changes to Code

Changes to the requirements can be made to the original requirements or to the requirements in FMaps and TMaps. If a user makes incremental changes to the English requirements document and then re-imports it by generating a new RMap of FMaps for those requirements, the requirements component will allow for requirements document changes and then re-import those requirements with a minimum of disturbance to the established RMap of FMap requirements models and their associated links to other models (e.g., testing systems or the target system under development). If a user makes changes to the requirements at the level of FMaps and TMaps they are in the form where the analyzer is able to automatically determine the requirements are consistent, logically complete and traceable.

Any relationship connections between models are automatically maintained. For example, if a requirement FMap has a dependency relation to a supporting target system (software) model and the requirement FMap is deleted, then the dependency relation is removed. Test models can be evolved as needed and regression tests performed as needed. The new design information is extracted and placed into the document based on the document configuration of the RAT. A change in a 001AXES specification is followed by an automatic regeneration of the code that has been impacted with the change using the generator in order to guarantee that the code matches the specification (again, as we discussed earlier, maintenance is always performed at the FMap and TMap level).

The user than instructs the generator to automatically regenerate the code. Only that part of the system that has changed will be regenerated. Once again the system is automatically compiled, linked and executed.

Summary

DBTF's preventative philosophy, to solve a problem as early as possible, means finding that problem, statically (before implementing it) is better than finding it dynamically at testing time. Preventing it by the way that system is defined is even better. Better, faster, cheaper; better yet, is not having to define the system (and build and test) it at all. This is the philosophy adhered to in designing systems and developing software with 001.

Towards this end, we have described how 001 can be used to automate the development process within each phase and between phases, beginning when the user first inputs his thoughts and ending when testing his ideas. It has been shown that with this approach, the same language and the same tools can be used throughout all phases, levels, and layers of design and development. There are no other languages or tools to learn.

Systems developed with 001 (SOOs) are all candidates for reuse, because they are defined with 001AXES (and 001AXES is based on DBTF). All SOOs can be used in multiple or evolving projects, because they do not have "lock-in" characteristics. Each DBTF development phase is independent of a later phase. An application can be automatically generated for various alternative implementations without changing its original definition. A set of requirements allows for alternative specifications; a set of specifications allows for alternative implementations (for example, one project with code generated from a 001AXES definition to interface with a relational data base environment and another generated from the same 001AXES definition to interface with an object oriented data base; one project with a client/server architecture and another with a mainframe architecture); or one project with C or embedded C, another with Java and another with C#.

Real world experience sets the stage for the DBTF technology, the DBTF technology embodies the theory, the language supports its representation, and the 001 Tool Suite supports its application and use. Each is evolutionary (in fact, recursively so), with experience feeding the theory, the theory feeding 001AXES, which in turn feeds the 001 Tool Suite. All are used, in concert, to design systems and build software—for gaining built-in quality, built-in productivity and built-in control.

References

1.
001 Tool Suite, Hamilton Technologies, Inc., Version 3.3.1, 1986-2001

2.
Hamilton, M., “Inside Development Before the Fact”, Electronic Design, April 4, 1994, ES

3.
Hamilton, M., “ Development Before the Fact in Action”, Electronic Design, June 13, 1994, ES.

4.
Hamilton, M., Hackler, W. R., Object Thinking: Development Before the Fact, In Press.

5.
Ouyang, M., Golay, M. W., “An Integrated Formal Approach for Developing High Quality Software of Safety-Critical Systems”, Massachusetts Institute of Technology, Cambridge, MA, Report No. MIT-ANP-TR-035., September, 1995

6.
Software Engineering Tools Experiment-Final Report, Vol. 1, Experiment Summary, Table 1, Page 9, Department of Defense, Strategic Defense Initiative, Washington, D. C., 20301-7100, October, 1992.

7.
Krut, Jr., “Integrating 001 Tool Support in the Feature-Oriented Domain Analysis Methodology” (CMU/SEI-93-TR-11, ESC-TR-93-188), Pittsburgh, Software Engineering Institute, Carnegie Mellon University, 1993.

8.
Hamilton, M., Hackler, W. R., Towards Cost Effective and Timely End-to-End Testing, HTI, prepared for Army Research Laboratory, Contract No. DAKF11-99-P-1236, July 17, 2000.

9.
Keyes, J., Internet Management,. chapters 30-33, on 001-developed systems for the Internet, Auerbach, 2000.

10.
Keyes, Jessica, Handbook of E-Business, Chapter F5, Hamilton, M., Defining e...com for e-Profits, RIA, 2000

001, 001:Digital Gold, Digital Gold, 001 Tool Suite, DBTF, Development Before the Fact, FunctionMap, FMap, TypeMap, TMap, ObjectMap, OMap, RoadMap, RMap, ExecutionMap, EMap, RAT, SOO, System Oriented Object, 001AXES, Xecutor, DXecutor, 001Engineer, 001Developer, 001LearningEdition, WebJumpStarter, Agent001Db are all trademarks of Hamilton Technologies, Inc.

� Parts of the material in this chapter have been taken from a chapter in Keyes, J., The Ultimate Internet Developers Sourcebook, AMACOM, Developing Web Applications with 001, to be published in the Fall of 2001. Other parts have been taken from Hamilton, M., Hackler, W. R., Object Thinking: Development Before the Fact, In Press.

� FMaps are function graphs showing the potential functional interactions between objects in terms of their object states.

� TMaps are type graphs showing the potential relationships that can exist between types of objects.

� By target system is meant the application being developed for the end user.

� A nodal family in 001AXES comprises a parent and some number of children being controlled by the parent. The structure used to group the parent and children together forms a background environment in which the children work together to perform the parent's function.

Proprietary: Internal Draft of HTI
4/25/01
page 49

