NPSS 1679 Attachment C

9. BRIEF ABSTRACT (A general description of the innovation which describes its capabilities, but does not reveal details that would enable duplication or imitation of the innovation.)
Note regarding use of previous project name, National Cycle Program (NCP), in some reference material:

Initial versions of NPSS were known as NCP prior to October 1999.

NASA Glenn Research Center is developing a common collaborative full engine simulation tool for the U.S. Government, aerospace industry, and academia called the Numerical Propulsion System Simulation (NPSS). NPSS provides an environment for the analysis and design of propulsion systems for aircraft and space vehicles. NPSS is based on the traditional cycle analysis and is extended with NPSS concepts of zooming using a flexible and extensible framework. Zooming is the automated, seamless integration of one or more high resolution component analyses with the full NPSS system simulation. The NPSS focuses on the potential integration of multiple disciplines such as aerodynamics, structures, and heat transfer, along with the concept of numerical zooming between 0- Dimensional to 1-, 2-, and 3- Dimensional component engine codes. The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms.

Through the NASA/Industry Cooperative Effort (NICE) agreement, propulsion experts and software engineers work together on the development of NPSS. Members of the team are representatives from:

NASA Glenn Research Center at Lewis Field, Honeywell, Rolls-Royce Allison, The Boeing Company, Arnold Engineering Development Center, Wright Patterson Air Force Base, General Electric Aircraft Engines, Pratt & Whitney, Teledyne Continental Motors, and Williams International.
The innovations of NPSS include zooming, an extensible and flexible architecture, plug-n-play via dynamic linking, and an industry standard modeling tool.

Zooming:

The NPSS preserves the historical cycle engineering practices but also extends these classical practices into the area of numerical zooming for use within a company’s design system. Zooming to higher fidelity or multidisciplinary codes may be performed locally on the same machine or on distributed machines, including multiple computer platforms. This enables the engineer to execute the “zoomed” codes on the most appropriate computer, depending on accessibility, efficiency, and availability. These may include various machines within an individual company, multiple sites, and partner sites. In addition, the zooming capability can be used to preserve company proprietary information such as, data, methods, and codes.

To date, the NPSS team has successfully demonstrated a variety of simulations using the zooming capability using NPSS as the “driver” of the simulation and also NPSS being “driven” by another code.

· September 1998

· Ran distributed simulation between NASA Glenn, NASA Langley, and Logistics Management Institute (LMI) which is located near Langley

· Two different Object Request Brokers (ORBs) inter-operated: Iona at Glenn and VisiBroker at Langley

· October 1998

· Ran distributed simulation between two machines at NASA Glenn and one at GE Aircraft Engines in Cincinnati, OH

· Ran distributed simulation between NASA Glenn and GE Aircraft Engines in Cincinnati, OH

· March 1999

· Pratt &Whitney completed initial zooming with a 1-D high pressure compressor

· June 1999

· Rolls-Royce Allison and NASA Glenn coupled low pressure subsystem high fidelity 3-Dimensional code (ADPAC) with NPSS 0-Dimensional simulation of the Energy Efficient Engine (EEE) core

· July 1999

· Propulsion Systems Analysis Office (PSAO) at NASA Glenn ran NPSS as the system simulation and zoomed to the weight (WATE) code

· September 1999

· NASA Glenn demonstrated NPSS RL10 rocket model which zoomed to a pump (PUMPA) code

Extensible, Flexible, and Powerful Architecture:
The NPSS architecture has proven to be a framework that successfully demonstrates the capability of the object-oriented paradigm to model a complex aeropropulsion process. Integration with external codes using the Common Object Request Broker Architecture (CORBA) is a viable high performance option to solving distributed code coupling problems. The design of the NPSS architecture has also enabled zooming in a variety of ways as explained above.

The NPSS is a framework for executing systems of components. Out of the box, NPSS comes with a set of built-in components designed to model aeropropulsion systems. The NPSS framework was designed so that adding new types of components is easy. NPSS provides the end-user engineer the capability to add components in three different ways: internal component, external component, or interpreted component. External componentsxe "external component" are ideal if the engineer does not want an element to be considered part of NPSS proper. An element may need to be outside of NPSS for one of the following reasons.

· Security (user and element)

· Performance (running components on more powerful or specialized machines)

· Linking to an already established service

· Single element daemon (logging, database)

· Zooming
Plug-n-Play via Dynamic Linking:

The plug-n-play capability is enabled by the flexible framework described in the previous section “Extensible, Flexible, and Powerful Architecture”. In addition to the multiple ways of adding different components to the NPSS, there is a dynamic feature called Dynamically Loadable Modules (DLMs) which is another innovative feature of NPSS. DLMs are an excellent way of bringing components or other functionality into an NPSS executable at “run” time. DLMs XE "DLMs" allow an NPSS executable to use components not statically compiled into the code. By compiling any number of components into an entity similar to a shared library, the component(s) can then be dynamically loaded into an NPSS executable at “run” time. A DLM can be loaded into an NPSS executable in three different ways:

· By passing an argument to the NPSS executable

· By using the interpreted loadDLM function either interactively or from a model file

· By calling the Executive library’s function from C++ code

Industry Standard Modeling Tool:

By working on the NPSS team consisting of both propulsion and software engineers from NASA Glenn and industry, the NPSS activity is a catalyst for establishing new standards for interfacing with tools of different disciplines and a forum to share best practices among competitors. The NPSS product is an industry standard modeling tool that results in quicker time-to-market, decrease cost, more reliable, and safer aircraft.

SECTION I – DESCRIPTION OF THE PROBLEM OR OBJECTIVE THAT MOTIVATED THE INNOVATION’S DEVELOPMENT

A – General description of problem/objective

The cost of implementing new technology in aerospace propulsion systems has become prohibitively expensive and time consuming. One of the main contributors to the high cost and long time-to-market is the need to perform many large scale hardware tests and the inability to integrate all appropriate subsystems early in the design process. The average development cost for an engine is $1 billion. The time-to-market is three to five years for a commercial engine and 10 years for a military engine. Industry recognized the need for an improved simulation capability in the early 90’s to enable simulations of full aerospace propulsion systems in sufficient detail to resolve critical design issues early in the design process before hardware is built. The aeropropulsion industry is changing where teaming on major programs is common and working closely with partners and customers is a necessity.

Industry and government partners agreed on common needs, which include:

· Common simulation tool to use with partners and customers

· Early detailed system-level analysis

· High performance computing, high fidelity simulation and multi-disciplinary capabilities

· Industry standard approaches

· Reduced cost of support and development

· Reduced time-to-market

· Increased productivity

· Increased accuracy of results earlier in the design process

B – Key or unique problem characteristics

Each company currently has a different approach, different codes, and its own proprietary engine cycle model based on its own standards and data models. The traditional cycle model is a non-dimensional (0-D) representation of the engine, where each component is a box whose performance is represented by a data table or map instead of a drawing. The goals of NPSS is to restructure the existing cycle model to enable analyses from 0-D to 3-D to be performed in a seamless manner throughout the design and development process.

C – Prior art, i.e., prior techniques, methods, materials, or devices performing function of the innovation, or previous means for performing function of software

Delivering Cycle Decks:

Current methods have been used for over 30 years. The classic model delivery scenario is for a supplier company to create a cycle deck, which is then delivered to a customer company. The goal is to be able to share models with others while imposing various restrictions about what the recipient can see or change.

The FORTRAN code has remained the basis for today’s modeling. The deck or cycle model is used throughout the engine’s lifecycle, from initial investigation through design testing and later as a tool for probing in-service problems.

Incompatible Interdisciplinary Tools:

Currently, interdisciplinary design involves several different types of tools that are not designed to work together. Human experts in each domain are required to operate each tool and condition the data for transfer to other tools. This process is iterative. As design evolves, many iterations of analysis are required.

Hardware Tests:

Currently, actually building the hardware is a necessity to perform and complete the testing. This is very expensive and time consuming.

D – Disadvantages or limitation of prior art

Different Modeling Tools Cause Slow Turn Around:

The cycle deck that is delivered to a customer company, for example Boeing, can take months to setup even thought it executes very quickly after setup is successfully completed. Currently, each supplier such as GE Aircraft or Pratt & Whitney send customer models using different software programs. It can take suppliers between one and six weeks or longer to give the models to an airframer company. Another week at least is needed to install assuming the engineers at the airframer company are able to run it. Out of necessity when developing a new engine, there are many iterations between the engine supplier and the airframe company. Using different tools instead of a common tool causes slow turnaround time.

Engineer is Burdened with Mundane Data Moves:

Currently, much of the engineer’s work is moving information based on the stage of the development process, various fidelities, and multiple disciplines per component. The data is moved manually which is extremely time intensive. Sometimes the decision is made not to continue with more detailed analysis because there is not enough time. The engineer needs to focus on the engineering details, not on learning multiple software tools or moving of data.

Currently Impossible to Simulate Full Engine with Varying Fidelities:

Historically, the capability to analyze the entire system with high fidelity does not even exist. Unlimited testing of the whole flight envelope is not possible when testing the real engine.

Hardware Testing is Prohibitively Expensive:

Building the different pieces of hardware each time is a trial and error method. Most engine and design costs are locked early in the process. Currently, detailed models of the engine are achieved after most of the cost is already committed. At that time, it’s difficult to go back and make changes.

SECTION II – TECHNICALLY COMPLETE AND EASILY UNDERSTANDABLE DESCRIPTION OF INNOVATION DEVELOPED TO SOLVE THE PROBLEM OR MEET THE OBJECTIVE

NPSS is a framework for executing systems of components. The user’s conceptual view of the physical components of the engine model can be mapped directly onto the object class hierarchy. An object may be one component or an assembly of components, similar to a subsystem. NPSS can be used as an aerothermodynamic 0-Dimensional (0-D) cycle simulation tool with extension capabilities to zoom to higher fidelities. The NPSS capabilities include:

· A flexible and powerful text-based object-oriented programming language is provided for the user to define model inputs, components, functions, and customized reports. xe "input files"An NPSS engine model may be completely defined in one or more input files. No alteration of source code is required, as the input syntax itself represents a full-featured language modeled after C++. These files may be created and modified using any text editor. Input filesxe "input file:what it should contain" contain commands and directives that do the following:

· Identify what thermodynamic gas-properties package to use.

· Define a model’s components and component linkages, tell NPSS what calculations to perform, and specify what output to generate.

· Describe how to “run” the engine model.

· Model definition:

A modelxe "model" will encapsulate a variety of component elementsxe "elements", some of which may have socketsxe "sockets" connected to subelements, functions, or tables, and ports connected by links to other elements. Elements may be grouped into assemblies, and each assembly may have a dedicated solver. In addition, the model definition will include specifications for generating formatted output using one or more data viewers.
· Three thermodynamic gas property packagesxe "thermodynamic gas property packages:supplied with NPSS" are supplied to support air breathing engine analysis. Their modular design allows you to select which package to use at model-run time.

· “Thermxe "Therm"” emphasizes computational speed at the expense of some accuracy and flexibility.

· “Janafxe "Janaf"” offers greater flexibility and matches the National Institute of Standards and Technology (NIST) standard (NIST(JANAF, Revision 3) at the expense of some computational speed.

· “GasTbl”, which is Therm-based and was created by Pratt & Whitney, includes humidity calculations as well as some chemical equilibrium capabilities.

· Steady-state and transient operation

· Sophisticated solver including constraint handling, convergence of discrete events (a combination of nested and/or simultaneous discrete solutions), and automatic or manual solver setup

· Set of built-in components designed to model aeropropulsion systems and a sample rockets model

· Flexible report generation

· Test data reduction

· Interactive debug capability

· Customer deck generation

· The NPSS Development Kit will provide the tools to develop custom components and use the CORBA capability for zooming to higher fidelity codes, coupling to multi-discipline codes, transmitting secure data, and distributing simulations across multi-platforms. These powerful capabilities will extend NPSS from a 0-D simulation tool to a multi-fidelity, multi-discipline system level simulation tool for the full life cycle of an engine. NPSS Development Kit is a standard part of the NPSS distribution and provides the following capabilities:

· Build an NPSS executable, either the standard NPSS deliverable or one with custom, site-specific components (elements, subelements, thermos, etc.)

· Build an NPSS customer deck (with or without custom site-specific components)

· Build Dynamically Loadable Modules (DLMs) for use with NPSS.

· NPSS provides the end-user engineer four different mechanisms to add new components: interpreted components, internal components, external components, and dynamically loadable module (DLM) components.

· Interpreted components can be added to NPSS quickly and easily using the input syntax and executed without rebuilding the software. The NPSS to C++ Converter Utility converts the definition of an interpreted NPSS component into an internal component written in C++. The interpreted engineering environment of NPSS enables rapid module creation, duplication, and customization.

· Internal components are added by writing new C++ code and compiling it into the NPSS.

· External components are added by writing special code that encloses existing component code and then using the CORBA to register it for access at run time. For coding external components, the NPSS provides an NPSS Development Kit, which includes a C++ wrapper. It is easier to code using the NPSS Development Kit than it is to implement all the functionality using only the implementation definition language (IDL). External componentsxe "external component" are ideal if the engineer does not want an element to be considered part of NPSS proper. An element may need to be outside of NPSS for one of the following reasons:

· Security (user and element)

· Performance (running components on more powerful or specialized machines)

· Linking to an already established service

· Single element daemon (logging, database)

· Zooming

· DLM components are dynamically loaded by the NPSS executable at run-time. They are good candidates for shared components and can be used to add functions to the NPSS core without making the NPSS executable bigger.

· A DLM can be loaded into an NPSS executable in three different ways:

· By passing an argument to the NPSS executable

· By using the interpreted loadDLM function either interactively or from a model file

· By calling the Executive library’s function from C++ code

· Error handling

· Auto-Documentation is generated web pages by interrogating NPSS component source

· Complete user documentation

· Ported to HP, Sun, SGI, NT (9/01)

H – Maintenance, reliability, safety factors

The NPSS production software, which is the release package distributed to the users, is designated as high-control software within the ISO9001 standards. As such, the software is developed following best software engineering practices. The following NPSS plans are available on request:

· NPSS/NICE Project Plan

· NPSS/NICE Software Management and Development Plan (SMDP)

· NPSS/NICE Software Standards & Procedures Specification (SSPS)

· NPSS/NICE Software Configuration Management Plan (SCMP)

· NPSS/NICE Software Verification & Validation Plan (SV&VP)

· NPSS Software Quality Assurance Plan (SQAP)

· NPSS Metrics Collection and Analysis Plan (MCAP)
Verification and Validation:

Throughout the development of the NPSS production software, continuous testing is performed using the regression test suite on a daily basis as additions or modifications are incorporated. The test suite consists of both verification tests and validation tests. Verification provides evidence that the system meets the requirements. Formal software inspections, unit tests, and system tests are performed throughout the development of NPSS to verify that requirements are met. Validation provides objective evidence that the NPSS product meets the intended use of NPSS. Validation follows successful verification activities and includes system tests using engine model files, acceptance reviews, and partner validation tests.

The validation tests performed at GE Aircraft Engine resulted in exact matches.

The following chart identifies the models used for validation throughout the development of the NPSS production software.

Date
Version

Engine Models

7/97
NCP Beta

(0D Cycle Steady State)
High Speed Research (HSR), Turbojet

8/98
NCP Version 1

(0D Cycle, Steady State & Transients)
HSR, Turbojet, Turbofan,

First Order Lag,

Damped Second Order Lag,

Physiological Benchmark (PHYSBE)

7/99
NPSS 0.1.0 Increment

(Dynamically Linked Modules)
HSR, Turbojet, Turbofan,

Energy Efficient Engine (EEE),

Pulse Detonation Engine (PDE),

General Electric Aircraft Engine (GE) Model,

Pratt & Whitney (P&W) HSR

11/99
NPSS 0.1.0 Increment

(demos)
Turbojet, Turbofan,

RL10A-3-3A rocket model,

1D Rocket Zooming

3/00
NPSS 1.0.0 Release
Turbojet, Turbofan,

First Order Lag,

Damped Second Order Lag,

PHYSBE

SECTION III – UNIQUE OR NOVEL FEATURES OF THE INNOVATION AND THE RESULTS OR BENEFITS OF ITS APPLICATION

A – Novel or unique features

With the ability to zoom to different fidelities, designers can try potential changes on the computer without building and testing the hardware. NPSS provides the capability to perform basic system modeling tasks demanded by the aerospace industry while coupling with other design codes and vertically integrating with high-fidelity performance models. Integration of multidisciplinary design is a unique feature for combining disciplines such as aerodynamics, structure and heat transfer with numerical zooming on component code. As these combining disciplines add input to the overall simulation, the effects of these disciplines can be measured against the geometry, the loads, the weight – all at once- as opposed to a serial process of passing along the analysis to each developer.

The object-oriented architecture enables distributed simulations and extending the framework as needed. Extending the framework may include adding individual customized or proprietary components, component libraries, and legacy codes.

NPSS will streamline and improve the current process by providing tighter integration of various tools, with automated translation. This reduces development time and reduces errors due to manual entry of data.

B – Advantages of innovation/software

GE Aircraft Engines expects a 50 percent improvement in the way GE does business with industry partners and customers. Other industry partners predict similar improvements. NPSS is the key to moving models quickly among supplier, airframer and customers for these iterations. NPSS provides a more efficient way of doing current low-fidelity analysis while allowing access to higher-fidelity codes. Now, with NPSS, instead of taking months to move high-fidelity codes in a model, it could take only days. When multi-company contracts are awarded, using NPSS as the common tool reduces matching of answers, and reduces costs in training and needed knowledge of other partners’ systems.
NPSS offers cost savings by providing more detail early in the design process. NPSS tools will allow higher-fidelity tools to be used when there is opportunity to change and impact engine design. NPSS can be used throughout the engine life cycle:

· Preliminary design of engines

· Engine development and certification

· Engine controls design

· Production engine representation

NPSS allows unlimited testing of the whole flight envelope, which is not possible when testing the real engine. This unlimited analysis is a result of NPSS’ enabling a wider range of high-fidelity analyses than the traditional 0-D cycle model. NPSS enables detailed system-level analyses that are usually carried out only at the component level.

The NPSS architecture provides the framework to interface NPSS with current in-house codes that are used to measure airplane performance and run them concurrently. Structure, noise, and emissions staffs use output from these cycles. Combining programs with NPSS would add capability and faster turnaround. It also has the potential to address global warming. NPSS will provide a framework for developing a good emissions model. The current state of development focuses on air breathing gas turbine engines. Initial models have been commercial engines, but recently, models of military engines are being developed using NPSS. Many of the technologies are generic and can be readily applied to rocket based systems and combined cycles currently being considered for low-cost access-to-space applications. NPSS also has the potential to be applied to ground based power systems. NPSS is also being used to support Propulsion Health Monitoring Effort of the NASA Aviation Safety Program. In addition, the NPSS framework and powerful input syntax provides the potential to build much bigger models than is possible with current modeling tools.

Using NPSS results in many benefits, including:

· Information technology issues are moved from the engineer to the NPSS zoomed component

· Enables error-free execution of legacy component analysis

· Rapid execution because more than one component can be zoomed and executed on multiple CPU’s through CORBA

· Code reuse where NPSS objects are integrated with non-NPSS analysis without redesign

· P&W 1D High Pressure Compressor demonstrated the elegance of NPSS Architecture’s ability to zoom. This kind of simulation wouldn’t be done before since it used to take 2 days. Now it takes 2 hours and can be integrated into the company’s design system resulting in a reduction factor of 10.

· No need for the “expert” to execute legacy code

· No need to “handoff” information between engineers because NPSS is the integrator

· Automatic map update of the 0-D model by zooming eliminates current manual process

· Accuracy exceeds 0-D map using higher fidelity data from the zoomed component

· Increased resolution of system model enables unprecedented operability analysis

· GE integration in one afternoon of Full Authority Data Electronic Control (FADEC) 3-D control system simulation FORTRAN-based (11,000 variables, 650 subroutines) running both steady state & transient
· Initial Rocket version created over summer ’99, validated on RL10A-3-3A model
· Initial Rocket version zoomed to 1D Pump code within two weeks and validated.
· Modeled Pulse Detonation Engine (PDE) using NPSS (reduced time from 3 months to 1 week)
· Used an EEE model and recasted to a representative model of high bypass turbofan engine and matched design points in less than a day (reduced time from 1 week to less than a day)
This new approach provided by NPSS promises to benefit everyone with safer, cheaper, more reliable systems.

F – For software, any re-use or re-engineering of existing code, use of shareware, or use of code owned by non-federal entity.)

Copyright 1997, The United States Government, as Represented by the Administrator of the National Aeronautics and Space Administration (NASA) .All rights reserved.

Proprietary Information. Do not release outside of the NICE-1 Government/Industry team members.

The majority of the NPSS software is NASA developed with minor use of tools such as the Rogue Wave standard C++ class libraries and GNU functions. Three different thermodynamics packages are included: Therm developed by NASA, Janaf developed by Honeywell, and GasTbl developed by Pratt & Whitney.

